50 TMVA::RuleFitAPI::RuleFitAPI( const MethodRuleFit *rfbase,
53 fMethodRuleFit(rfbase),
56 fLogger("RuleFitAPI",minType)
60 SetRFWorkDir(rfbase->GetRFWorkDir());
62 SetRFWorkDir(
"./rulefit");
82 <<
"---------------------------------------------------------------------------\n"
83 <<
"- You are running the interface to Jerome Friedmans RuleFit(tm) code. -\n"
84 <<
"- For a full manual see the following web page: -\n"
86 <<
"- http://www-stat.stanford.edu/~jhf/R-RuleFit.html -\n"
88 <<
"---------------------------------------------------------------------------"
98 <<
"------------------------ RULEFIT-JF INTERFACE SETUP -----------------------\n"
100 <<
"1. Create a rulefit directory in your current work directory:\n"
101 <<
" mkdir " << fRFWorkDir <<
"\n\n"
102 <<
" the directory may be set using the option RuleFitDir\n"
104 <<
"2. Copy (or make a link) the file rf_go.exe into this directory\n"
106 <<
"The file can be obtained from Jerome Friedmans homepage (linux):\n"
107 <<
" wget http://www-stat.stanford.edu/~jhf/r-rulefit/linux/rf_go.exe\n"
109 <<
"Don't forget to do:\n"
110 <<
" chmod +x rf_go.exe\n"
112 <<
"For Windows download:\n"
113 <<
" http://www-stat.stanford.edu/~jhf/r-rulefit/windows/rf_go.exe\n"
115 <<
"NOTE: other platforms are not supported (see Friedmans homepage)\n"
117 <<
"---------------------------------------------------------------------------\n"
136 fRFIntParms.p = fMethodRuleFit->DataInfo().GetNVariables();
137 fRFIntParms.max_rules = fMethodRuleFit->GetRFNrules();
138 fRFIntParms.tree_size = fMethodRuleFit->GetRFNendnodes();
139 fRFIntParms.path_steps = fMethodRuleFit->GetGDNPathSteps();
141 fRFRealParms.path_inc = fMethodRuleFit->GetGDPathStep();
142 fRFRealParms.samp_fract = fMethodRuleFit->GetTreeEveFrac();
143 fRFRealParms.trim_qntl = fMethodRuleFit->GetLinQuantile();
144 fRFRealParms.conv_fac = fMethodRuleFit->GetGDErrScale();
146 if (fRuleFit->GetRuleEnsemblePtr()->DoOnlyLinear() )
147 fRFIntParms.lmode = kRfLinear;
148 else if (fRuleFit->GetRuleEnsemblePtr()->DoOnlyRules() )
149 fRFIntParms.lmode = kRfRules;
151 fRFIntParms.lmode = kRfBoth;
172 fLogger <<
kWARNING <<
"Must create a rulefit directory named : " << fRFWorkDir <<
Endl;
174 fLogger <<
kFATAL <<
"Setup failed - aborting!" <<
Endl;
177 FILE *
f = fopen(
"rf_go.exe",
"r");
179 fLogger <<
kWARNING <<
"No rf_go.exe file in directory : " << fRFWorkDir <<
Endl;
181 fLogger <<
kFATAL <<
"Setup failed - aborting!" <<
Endl;
194 Int_t n = fMethodRuleFit->Data()->GetNTrainingEvents();
197 fRFProgram = kRfTrain;
206 Int_t n = fMethodRuleFit->Data()->GetNTestEvents();
209 fRFProgram = kRfPredict;
217 fRFRealParms.xmiss = 9.0e30;
218 fRFRealParms.trim_qntl = 0.025;
219 fRFRealParms.huber = 0.8;
220 fRFRealParms.inter_supp = 3.0;
221 fRFRealParms.memory_par = 0.01;
222 fRFRealParms.samp_fract = 0.5;
223 fRFRealParms.path_inc = 0.01;
224 fRFRealParms.conv_fac = 1.1;
232 fRFIntParms.mode = (int)kRfClass;
233 fRFIntParms.lmode = (int)kRfBoth;
236 fRFIntParms.max_rules = 2000;
237 fRFIntParms.tree_size = 4;
238 fRFIntParms.path_speed = 2;
239 fRFIntParms.path_xval = 3;
240 fRFIntParms.path_steps = 50000;
241 fRFIntParms.path_testfreq = 100;
242 fRFIntParms.tree_store = 10000000;
243 fRFIntParms.cat_store = 1000000;
257 if (fRFProgram==kRfTrain) WriteTrain();
258 if (fRFProgram==kRfPredict) WriteTest();
259 if (fRFProgram==kRfVarimp) WriteRealVarImp();
269 if (!OpenRFile(
"intparms",f))
return kFALSE;
270 WriteInt(f,&fRFIntParms.mode,
sizeof(fRFIntParms)/
sizeof(
Int_t));
280 if (!OpenRFile(
"realparms",f))
return kFALSE;
281 WriteFloat(f,&fRFRealParms.xmiss,
sizeof(fRFRealParms)/
sizeof(
Float_t));
296 fRFLx.resize(fMethodRuleFit->DataInfo().GetNVariables(),1);
299 if (!OpenRFile(
"lx",f))
return kFALSE;
300 WriteInt(f,&fRFLx[0],fRFLx.size());
310 if (!OpenRFile(
"program",f))
return kFALSE;
312 switch (fRFProgram) {
317 program =
"rulefit_pred";
324 fRFProgram = kRfTrain;
338 if (!OpenRFile(
"realvarimp",f))
return kFALSE;
342 WriteFloat(f,&rvp[0],2);
351 fLogger <<
kWARNING <<
"WriteRfOut is not yet implemented" <<
Endl;
360 fLogger <<
kWARNING <<
"WriteRfStatus is not yet implemented" <<
Endl;
369 fLogger <<
kWARNING <<
"WriteRuleFitMod is not yet implemented" <<
Endl;
378 fLogger <<
kWARNING <<
"WriteRuleFitSum is not yet implemented" <<
Endl;
391 if (!OpenRFile(
"train.x",fx))
return kFALSE;
392 if (!OpenRFile(
"train.y",fy))
return kFALSE;
393 if (!OpenRFile(
"train.w",fw))
return kFALSE;
400 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
401 for (
Int_t ievt=0;ievt<fMethodRuleFit->Data()->GetNTrainingEvents(); ievt++) {
402 const Event * ev = fMethodRuleFit->GetTrainingEvent(ievt);
407 y = fMethodRuleFit->DataInfo().IsSignal(ev)? 1.0 : -1.0;
413 fLogger <<
kINFO <<
"Number of training data written: " << fMethodRuleFit->Data()->GetNTrainingEvents() <<
Endl;
426 if (!OpenRFile(
"test.x",f))
return kFALSE;
431 neve =
static_cast<Float_t>(fMethodRuleFit->Data()->GetNEvents());
432 WriteFloat(f,&neve,1);
438 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
439 for (
Int_t ievt=0;ievt<fMethodRuleFit->Data()->GetNEvents(); ievt++) {
440 vf = fMethodRuleFit->GetEvent(ievt)->GetValue(ivar);
444 fLogger <<
kINFO <<
"Number of test data written: " << fMethodRuleFit->Data()->GetNEvents() <<
Endl;
455 if (!OpenRFile(
"varnames",f))
return kFALSE;
456 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
457 f << fMethodRuleFit->DataInfo().GetVariableInfo(ivar).GetExpression() <<
'\n';
468 fLogger <<
kWARNING <<
"WriteVarImp is not yet implemented" <<
Endl;
477 fLogger <<
kWARNING <<
"WriteYhat is not yet implemented" <<
Endl;
489 if (!OpenRFile(
"yhat",f))
return kFALSE;
492 ReadFloat(f,&xval,1);
493 neve =
static_cast<Int_t>(xval);
494 if (neve!=fMethodRuleFit->Data()->GetNTestEvents()) {
495 fLogger <<
kWARNING <<
"Inconsistent size of yhat file and test tree!" <<
Endl;
496 fLogger <<
kWARNING <<
"neve = " << neve <<
" , tree = " << fMethodRuleFit->Data()->GetNTestEvents() <<
Endl;
499 for (
Int_t ievt=0; ievt<fMethodRuleFit->Data()->GetNTestEvents(); ievt++) {
500 ReadFloat(f,&xval,1);
501 fRFYhat.push_back(xval);
514 if (!OpenRFile(
"varimp",f))
return kFALSE;
518 nvars=fMethodRuleFit->DataInfo().GetNVariables();
522 for (
UInt_t ivar=0; ivar<nvars; ivar++) {
523 ReadFloat(f,&xval,1);
527 if (xval>xmax) xmax=xval;
529 fRFVarImp.push_back(xval);
535 for (
UInt_t ivar=0; ivar<nvars; ivar++) {
536 fRFVarImp[ivar] = fRFVarImp[ivar]/
xmax;
537 ReadFloat(f,&xval,1);
538 fRFVarImpInd.push_back(
Int_t(xval)-1);
550 fLogger <<
kVERBOSE <<
"Reading RuleFit summary file" <<
Endl;
552 if (!OpenRFile(
"rulefit.sum",f))
return kFALSE;
563 fRuleFit->GetRuleEnsemblePtr()->SetAverageRuleSigma(0.4);
591 lines += ReadInt(f,&nrules);
592 norules = (nrules==1);
593 lines += ReadInt(f,&dumI);
594 norules = norules && (dumI==1);
595 lines += ReadInt(f,&dumI);
596 norules = norules && (dumI==1);
597 lines += ReadInt(f,&dumI);
598 norules = norules && (dumI==0);
599 if (nrules==0) norules=
kTRUE;
600 if (norules) nrules = 0;
602 lines += ReadInt(f,&nvars);
603 lines += ReadInt(f,&nvarsOpt);
604 lines += ReadFloat(f,&dumF);
605 lines += ReadFloat(f,&offset);
606 fLogger <<
kDEBUG <<
"N(rules) = " << nrules <<
Endl;
607 fLogger <<
kDEBUG <<
"N(vars) = " << nvars <<
Endl;
608 fLogger <<
kDEBUG <<
"N(varsO) = " << nvarsOpt <<
Endl;
609 fLogger <<
kDEBUG <<
"xmiss = " << dumF <<
Endl;
610 fLogger <<
kDEBUG <<
"offset = " << offset <<
Endl;
611 if (nvars!=nvarsOpt) {
612 fLogger <<
kWARNING <<
"Format of rulefit.sum is ... weird?? Continuing but who knows how it will end...?" <<
Endl;
614 std::vector<Double_t> rfSupp;
615 std::vector<Double_t> rfCoef;
616 std::vector<Int_t> rfNcut;
617 std::vector<Rule *> rfRules;
622 lines += ReadFloat(f,&dumF);
637 lines += ReadFloat(f,&dumF);
638 lines += ReadFloat(f,&dumF);
639 rfSupp.push_back(dumF);
640 lines += ReadFloat(f,&dumF);
641 rfCoef.push_back(dumF);
642 lines += ReadFloat(f,&dumF);
643 rfNcut.push_back(static_cast<int>(dumF+0.5));
644 lines += ReadFloat(f,&dumF);
661 Rule *rule =
new Rule(fRuleFit->GetRuleEnsemblePtr());
662 rfRules.push_back( rule );
680 if (imp>impref) impref = imp;
682 fLogger <<
kDEBUG <<
"Rule #" << r <<
" : " << nvars <<
Endl;
683 fLogger <<
kDEBUG <<
" support = " << rfSupp[
r] <<
Endl;
685 fLogger <<
kDEBUG <<
" coeff = " << rfCoef[
r] <<
Endl;
686 fLogger <<
kDEBUG <<
" N(cut) = " << rfNcut[
r] <<
Endl;
689 lines += ReadFloat(f,&dumF);
690 varind =
static_cast<Int_t>(dumF+0.5)-1;
691 lines += ReadFloat(f,&dumF);
693 lines += ReadFloat(f,&dumF);
706 fRuleFit->GetRuleEnsemblePtr()->SetRules( rfRules );
707 fRuleFit->GetRuleEnsemblePtr()->SetOffset( offset );
720 std::vector<Int_t> varind;
721 std::vector<Double_t>
xmin;
722 std::vector<Double_t>
xmax;
723 std::vector<Double_t> average;
724 std::vector<Double_t> stdev;
725 std::vector<Double_t>
norm;
726 std::vector<Double_t> coeff;
729 lines += ReadFloat(f,&dumF);
730 varind.push_back(static_cast<Int_t>(dumF+0.5)-1);
731 lines += ReadFloat(f,&dumF);
732 xmin.push_back(static_cast<Double_t>(dumF));
733 lines += ReadFloat(f,&dumF);
734 xmax.push_back(static_cast<Double_t>(dumF));
735 lines += ReadFloat(f,&dumF);
736 average.push_back(static_cast<Double_t>(dumF));
737 lines += ReadFloat(f,&dumF);
738 stdev.push_back(static_cast<Double_t>(dumF));
739 Double_t nv = fRuleFit->GetRuleEnsemblePtr()->CalcLinNorm(stdev.back());
741 lines += ReadFloat(f,&dumF);
742 coeff.push_back(dumF/nv);
745 fLogger <<
kDEBUG <<
" varind = " << varind.back() <<
Endl;
746 fLogger <<
kDEBUG <<
" xmin = " << xmin.back() <<
Endl;
747 fLogger <<
kDEBUG <<
" xmax = " << xmax.back() <<
Endl;
748 fLogger <<
kDEBUG <<
" average = " << average.back() <<
Endl;
749 fLogger <<
kDEBUG <<
" stdev = " << stdev.back() <<
Endl;
750 fLogger <<
kDEBUG <<
" coeff = " << coeff.back() <<
Endl;
753 fRuleFit->GetRuleEnsemblePtr()->SetLinCoefficients(coeff);
754 fRuleFit->GetRuleEnsemblePtr()->SetLinDM(xmin);
755 fRuleFit->GetRuleEnsemblePtr()->SetLinDP(xmax);
756 fRuleFit->GetRuleEnsemblePtr()->SetLinNorm(norm);
759 imp = fRuleFit->GetRuleEnsemblePtr()->CalcLinImportance();
760 if (imp>impref) impref=imp;
761 fRuleFit->GetRuleEnsemblePtr()->SetImportanceRef(impref);
762 fRuleFit->GetRuleEnsemblePtr()->CleanupLinear();
764 fRuleFit->GetRuleEnsemblePtr()->CalcVarImportance();
767 fLogger <<
kDEBUG <<
"Reading model done" <<
Endl;
Bool_t WriteLx()
Save input variable mask.
Bool_t ReadVarImp()
read variable importance
void WelcomeMessage()
welcome message
void SetCoefficient(Double_t v)
void HowtoSetupRF()
howto message
MsgLogger & Endl(MsgLogger &ml)
void SetSSBNeve(Double_t v)
ClassImp(TMVA::RuleFitAPI) TMVA
void SetRuleCut(RuleCut *rc)
void SetCutMax(Int_t i, Double_t v)
virtual ~RuleFitAPI()
destructor
Bool_t WriteRfStatus()
written by rf_go.exe; write rulefit status
void SetRFWorkDir(const char *wdir)
set the directory containing rf_go.exe.
Bool_t WriteAll()
write all files read by rf_go.exe
void FillIntParmsDef()
set default int params
Bool_t cd(const char *path)
Bool_t WriteTrain()
write training data, columnwise
Bool_t WriteRfOut()
written by rf_go.exe; write rulefit output (rfout)
Bool_t WriteIntParms()
write int params file
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not...
Bool_t WriteRealVarImp()
write the minimum importance to be considered
void ImportSetup()
import setup from MethodRuleFit
void CheckRFWorkDir()
check if the rulefit work dir is properly setup.
const char * Data() const
void SetCutMin(Int_t i, Double_t v)
Bool_t WriteProgram()
write command to rf_go.exe
void FillRealParmsDef()
set default real params
void SetCutDoMin(Int_t i, Bool_t v)
if(pyself &&pyself!=Py_None)
Bool_t ReadModelSum()
read model from rulefit.sum
void SetSelector(Int_t i, UInt_t s)
Bool_t WriteRuleFitMod()
written by rf_go.exe (NOTE:Format unknown!)
void SetTrainParms()
set the training parameters
R__EXTERN TSystem * gSystem
Double_t GetImportance() const
Double_t GetSigma() const
virtual Int_t Exec(const char *shellcmd)
Execute a command.
void SetTestParms()
set the test params
void SetImportanceRef(Double_t v)
void SetSupport(Double_t v)
void SetNorm(Double_t norm)
void SetCutDoMax(Int_t i, Bool_t v)
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Bool_t WriteVarNames()
write variable names, ascii
Bool_t WriteTest()
Write test data.
Bool_t WriteYhat()
written by rf_go.exe
Bool_t WriteRuleFitSum()
written by rf_go.exe (NOTE: format unknown!)
Bool_t ReadYhat()
read the score
Int_t RunRuleFit()
execute rf_go.exe
Bool_t WriteRealParms()
write int params file
double norm(double *x, double *p)
void InitRuleFit()
default initialisation SetRFWorkDir("./rulefit");