29 #ifndef ROOT_TMVA_DataSet    30 #define ROOT_TMVA_DataSet    69 #ifndef ROOT_TMVA_Types    72 #ifndef ROOT_TMVA_VariableInfo   166       std::vector< std::map< TString, Results* > > 
fResults; 
 Random number generator class based on M. 
 
const Event * GetTestEvent(Long64_t ievt) const
 
void SetCurrentEvent(Long64_t ievt) const
 
Long64_t fTrainingBlockSize
 
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingSelected
 
void AddEvent(Event *, Types::ETreeType)
add event to event list after which the event is owned by the dataset 
 
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingEventList
 
std::vector< std::vector< Event * > > fEventCollection
 
void CreateSampling() const
create an event sampling (random or importance sampling) 
 
TRandom3 * fSamplingRandom
 
UInt_t GetNVariables() const
access the number of variables through the datasetinfo 
 
std::vector< Char_t > fBlockBelongToTraining
 
void ClearNClassEvents(Int_t type)
 
const std::vector< Event * > & GetEventCollection(Types::ETreeType type=Types::kMaxTreeType) const
 
Long64_t GetNEvtBkgdTrain()
return number of background training events in dataset 
 
UInt_t TreeIndex(Types::ETreeType type) const
 
#define ClassDef(name, id)
 
UInt_t GetNSpectators() const
access the number of targets through the datasetinfo 
 
The TNamed class is the base class for all named ROOT classes. 
 
virtual ~DataSet()
destructor 
 
TTree * GetTree(Types::ETreeType type)
create the test/trainings tree with all the variables, the weights, the classes, the targets...
 
Types::ETreeType GetCurrentType() const
 
const Event * GetEvent(Long64_t ievt, Types::ETreeType type) const
 
Long64_t GetNTrainingEvents() const
 
Bool_t fHasNegativeEventWeights
 
void MoveTrainingBlock(Int_t blockInd, Types::ETreeType dest, Bool_t applyChanges=kTRUE)
move training block 
 
const Event * GetTrainingEvent(Long64_t ievt) const
 
void ApplyTrainingSetDivision()
apply division of data set 
 
Bool_t HasNegativeEventWeights() const
 
Results * GetResults(const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
TString info(resultsName+"/"); switch(type) { case Types::kTraining: info += "kTraining/"; break; cas...
 
std::vector< std::vector< Long64_t > > fClassEvents
 
Long64_t GetNEvtSigTest()
return number of signal test events in dataset 
 
void DeleteResults(const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
delete the results stored for this particulary Method instance (here appareantly called resultsName i...
 
void DivideTrainingSet(UInt_t blockNum)
divide training set 
 
void DestroyCollection(Types::ETreeType type, Bool_t deleteEvents)
destroys the event collection (events + vector) 
 
const Event * GetEvent(Long64_t ievt) const
 
Long64_t GetNEvtBkgdTest()
return number of background test events in dataset 
 
Long64_t GetNTestEvents() const
 
void IncrementNClassEvents(Int_t type, UInt_t classNumber)
 
std::vector< Char_t > fSampling
 
void EventResult(Bool_t successful, Long64_t evtNumber=-1)
increase the importance sampling weight of the event when not successful and decrease it when success...
 
std::vector< Float_t > fSamplingWeight
 
Long64_t fCurrentEventIdx
 
UInt_t fCurrentTreeIdx
[train/test/...][method-identifier] 
 
Long64_t GetNEvtSigTrain()
return number of signal training events in dataset 
 
MsgLogger & Log() const
message logger 
 
void SetCurrentType(Types::ETreeType type) const
 
void SetEventCollection(std::vector< Event *> *, Types::ETreeType, Bool_t deleteEvents=true)
Sets the event collection (by DataSetFactory) 
 
void ApplyTrainingBlockDivision()
 
std::vector< Int_t > fSamplingNEvents
 
Long64_t GetNClassEvents(Int_t type, UInt_t classNumber)
 
Abstract ClassifierFactory template that handles arbitrary types. 
 
#define dest(otri, vertexptr)
 
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
 
A TTree object has a header with a name and a title. 
 
const TTree * GetEventCollectionAsTree()
 
UInt_t GetNTargets() const
access the number of targets through the datasetinfo 
 
void InitSampling(Float_t fraction, Float_t weight, UInt_t seed=0)
initialize random or importance sampling 
 
const Event * GetEvent() const
 
std::vector< std::map< TString, Results *> > fResults