27 #ifndef ROOT_TMVA_MethodDT 28 #define ROOT_TMVA_MethodDT 48 #ifndef ROOT_TMVA_MethodBase 51 #ifndef ROOT_TMVA_DecisionTree 54 #ifndef ROOT_TMVA_Event
std::vector< Event * > fEventSample
void Init(void)
common initialisation with defaults for the DT-Method
DecisionTree::EPruneMethod fPruneMethod
static const Int_t fgDebugLevel
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
Double_t fNodePurityLimit
Double_t PruneTree()
prune the decision tree if requested (good for individual trees that are best grown out...
void SetMinNodeSize(Double_t sizeInPercent)
#define ClassDef(name, id)
void ReadWeightsFromStream(std::istream &istr)
Double_t GetPruneStrength()
void DeclareOptions()
define the options (their key words) that can be set in the option string UseRandomisedTrees choose a...
Double_t fDeltaPruneStrength
void AddWeightsXMLTo(void *parent) const
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
Int_t GetNNodesBeforePruning()
Double_t TestTreeQuality(DecisionTree *dt)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value
Int_t GetNNodesBeforePruning()
MethodDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
the standard constructor for just an ordinar "decision trees"
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Abstract ClassifierFactory template that handles arbitrary types.
virtual ~MethodDT(void)
destructor
void ReadWeightsFromXML(void *wghtnode)
virtual void ReadWeightsFromStream(std::istream &)=0
void GetHelpMessage() const
std::vector< Double_t > fVariableImportance
const Ranking * CreateRanking()
SeparationBase * fSepType