16 #ifndef RooStats_NeymanConstruction    20 #ifndef RooStats_RooStatsUtils    24 #ifndef RooStats_PointSetInterval    60    fAdaptiveSampling(false),
    61    fAdditionalNToysFactor(1.),
    62    fSaveBeltToFile(false),
    90     oocoutI(f,
Contents) << 
"NeymanConstruction saving ConfidenceBelt to file SamplingDistributions.root" << endl;
    91     f = 
new TFile(
"SamplingDistributions.root",
"recreate");
   102                    "points in interval", 
   131     Double_t upperEdgeOfAcceptance, upperEdgeMinusSigma, upperEdgePlusSigma;
   132     Double_t lowerEdgeOfAcceptance, lowerEdgeMinusSigma, lowerEdgePlusSigma;
   133     Int_t additionalMC=0;
   151     totalMC = (
Int_t) tmc; 
   161    additionalMC = 2*totalMC; 
   167            oocoutE((
TObject*)0,
Eval) << 
"Neyman Construction: error generating sampling distribution" << endl;
   170    totalMC=samplingDist->
GetSize();
   176    upperEdgeOfAcceptance = 
   178                 sigma, upperEdgePlusSigma);
   181               sigma, upperEdgeMinusSigma);
   184    lowerEdgeOfAcceptance = 
   186                 sigma, lowerEdgePlusSigma);
   189               sigma, lowerEdgeMinusSigma);
   192         << 
"total MC = " << totalMC 
   193         << 
" this test stat = " << thisTestStatistic << endl
   194         << 
" upper edge -1sigma = " << upperEdgeMinusSigma
   195         << 
", upperEdge = "<<upperEdgeOfAcceptance
   196         << 
", upper edge +1sigma = " << upperEdgePlusSigma << endl
   197         << 
" lower edge -1sigma = " << lowerEdgeMinusSigma
   198         << 
", lowerEdge = "<<lowerEdgeOfAcceptance
   199         << 
", lower edge +1sigma = " << lowerEdgePlusSigma << endl;
   201          (thisTestStatistic <= upperEdgeOfAcceptance &&
   202           thisTestStatistic > upperEdgeMinusSigma)
   203          || (thisTestStatistic >= upperEdgeOfAcceptance &&
   204         thisTestStatistic < upperEdgePlusSigma)
   205          || (thisTestStatistic <= lowerEdgeOfAcceptance &&
   206         thisTestStatistic > lowerEdgeMinusSigma)
   207          || (thisTestStatistic >= lowerEdgeOfAcceptance &&
   208         thisTestStatistic < lowerEdgePlusSigma) 
   209       ) && (totalMC < 100./
fSize)
   216          oocoutE((
TObject*)0,
Eval) << 
"Neyman Construction: error generating sampling distribution" << endl;
   220       lowerEdgeOfAcceptance = 
   222       upperEdgeOfAcceptance = 
   230                  lowerEdgeOfAcceptance, 
   231                  upperEdgeOfAcceptance);
   238             << 
" total MC = " << samplingDist->
GetSize()
   239             << 
" this test stat = " << thisTestStatistic << endl;
   244     ooccoutP(samplingDist,
Eval) << 
"[" << lowerEdgeOfAcceptance << 
", "    245              << upperEdgeOfAcceptance << 
"] " << 
" in interval = " <<
   246       (thisTestStatistic >= lowerEdgeOfAcceptance && thisTestStatistic <= upperEdgeOfAcceptance) 
   250     if(thisTestStatistic >= lowerEdgeOfAcceptance && thisTestStatistic <= upperEdgeOfAcceptance) {
   253       pointsInInterval->add(*point);
   259       samplingDist->
Write();
   260       string tmpName = 
"hist_";
   261       tmpName+=samplingDist->
GetName();
   262       TH1F* 
h = 
new TH1F(tmpName.c_str(),
"",500,0.,5.);
   263       for(
int ii=0; ii<samplingDist->
GetSize(); ++ii){
   273   oocoutI(pointsInInterval,
Eval) << npass << 
" points in interval" << endl;
 
virtual const char * GetName() const
Returns name of object. 
 
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory. 
 
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1. 
 
TIterator * createIterator(Bool_t dir=kIterForward) const
 
const std::vector< Double_t > & GetSamplingDistribution() const
Get test statistics values. 
 
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
 
virtual void SetParametersForTestStat(const RooArgSet &)=0
 
virtual const RooArgSet * get() const
 
TestStatSampler * fTestStatSampler
 
Double_t getVal(const RooArgSet *set=0) const
 
virtual PointSetInterval * GetInterval() const
Main interface to get a ConfInterval (will be a PointSetInterval) 
 
THist< 1, float, THistStatContent, THistStatUncertainty > TH1F
 
Double_t InverseCDF(Double_t pvalue)
get the inverse of the Cumulative distribution function 
 
tomato 1-D histogram with a float per channel (see TH1 documentation)} 
 
Short_t Min(Short_t a, Short_t b)
 
void AddAcceptanceRegion(RooArgSet &, AcceptanceRegion region, Double_t cl=-1., Double_t leftside=-1.)
 
virtual SamplingDistribution * AppendSamplingDistribution(RooArgSet &allParameters, SamplingDistribution *last, Int_t additionalMC)
 
virtual SamplingDistribution * GetSamplingDistribution(RooArgSet ¶msOfInterest)=0
 
virtual ~NeymanConstruction()
default constructor if(fOwnsWorkspace && fWS) delete fWS; if(fConfBelt) delete fConfBelt; ...
 
RooAbsData & fData
size of the test (eg. specified rate of Type I error) 
 
RooRealVar represents a fundamental (non-derived) real valued object. 
 
ModelConfig & fModel
data set 
 
Int_t GetSize() const
size of samples 
 
RooAbsData is the common abstract base class for binned and unbinned datasets. 
 
ToyMCSampler is an implementation of the TestStatSampler interface. 
 
RooDataSet is a container class to hold unbinned data. 
 
This class simply holds a sampling distribution of some test statistic. 
 
Namespace for the RooStats classes. 
 
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing) 
 
PointSetInterval is a concrete implementation of the ConfInterval interface. 
 
NeymanConstruction is a concrete implementation of the NeymanConstruction interface that...
 
Mother of all ROOT objects. 
 
virtual Double_t EvaluateTestStatistic(RooAbsData &data, RooArgSet ¶msOfInterest)=0
 
Double_t fAdditionalNToysFactor
 
Double_t fLeftSideFraction
 
virtual Int_t numEntries() const
 
RooAbsData * fPointsToTest
 
ConfidenceBelt * fConfBelt