27 #ifndef ROOT_TMVA_RuleFit    28 #define ROOT_TMVA_RuleFit    32 #ifndef ROOT_TMVA_DecisionTree    35 #ifndef ROOT_TMVA_RuleEnsemble    38 #ifndef ROOT_TMVA_RuleFitParams    41 #ifndef ROOT_TMVA_Event   169       std::vector< const TMVA::DecisionTree *>  
fForest;    
 std::vector< const TMVA::Event * > fTrainingEventsRndm
 
void ForestStatistics()
summary of statistics of all trees 
 
void MakeForest()
make a forest of decisiontrees 
 
const RuleEnsemble & GetRuleEnsemble() const
 
void SetVisHistsUseImp(Bool_t f)
 
void SetGDTau(Double_t t=0.0)
 
void CalcImportance()
calculates the importance of each rule 
 
const std::vector< const TMVA::Event *> & GetTrainingEvents() const
 
void NormVisHists(std::vector< TH2F *> &hlist)
normalize rule importance hists 
 
void SetGDTau(Double_t t)
 
void SetMsgType(EMsgType t)
set the current message type to that of mlog for this class and all other subtools ...
 
const MethodBase * fMethodBase
 
Bool_t GetCorrVars(TString &title, TString &var1, TString &var2)
get first and second variables from title 
 
void InitNEveEff()
init effective number of events (using event weights) 
 
void FitCoefficients()
Fit the coefficients for the rule ensemble. 
 
std::vector< Double_t > fEventWeights
 
const Event * GetTrainingEvent(UInt_t i) const
 
void SetTrainingEvents(const std::vector< const TMVA::Event *> &el)
set the training events randomly 
 
const std::vector< const TMVA::DecisionTree * > & GetForest() const
 
RuleFit(void)
default constructor 
 
#define ClassDef(name, id)
 
void BuildTree(TMVA::DecisionTree *dt)
build the decision tree using fNTreeSample events from fTrainingEventsRndm 
 
void UseImportanceVisHists()
 
void GetRndmSampleEvents(std::vector< const TMVA::Event * > &evevec, UInt_t nevents)
draw a random subsample of the training events without replacement 
 
const RuleFitParams & GetRuleFitParams() const
 
virtual ~RuleFit(void)
destructor 
 
RuleEnsemble * GetRuleEnsemblePtr()
 
void SetGDNPathSteps(Int_t n=100)
 
void SetMethodBase(const MethodBase *rfbase)
set MethodBase 
 
void SetGDNPathSteps(Int_t np)
 
void RestoreEventWeights()
save event weights - must be done before making the forest 
 
const MethodBase * GetMethodBase() const
 
RuleFitParams * GetRuleFitParamsPtr()
 
void Copy(const RuleFit &other)
copy method 
 
void FillVisHistCut(const Rule *rule, std::vector< TH2F *> &hlist)
help routine to MakeVisHists() - fills for all variables 
 
void FillCorr(TH2F *h2, const TMVA::Rule *rule, Int_t v1, Int_t v2)
fill rule correlation between vx and vy, weighted with either the importance or the coefficient ...
 
void MakeDebugHists()
this will create a histograms intended rather for debugging or for the curious user ...
 
static const Int_t randSEED
 
tomato 2-D histogram with a float per channel (see TH1 documentation)} 
 
void SetImportanceCut(Double_t minimp=0)
 
void FillLin(TH2F *h2, Int_t vind)
fill lin 
 
RuleEnsemble fRuleEnsemble
 
void Boost(TMVA::DecisionTree *dt)
Boost the events. 
 
void SetGDPathStep(Double_t s=0.01)
 
void SaveEventWeights()
save event weights - must be done before making the forest 
 
Double_t GetNEveEff() const
 
Double_t GetTrainingEventWeight(UInt_t i) const
 
const MethodRuleFit * fMethodRuleFit
 
void MakeVisHists()
this will create histograms visualizing the rule ensemble 
 
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
 
void FillVisHistCorr(const Rule *rule, std::vector< TH2F *> &hlist)
help routine to MakeVisHists() - fills for all correlation plots 
 
void InitPtrs(const TMVA::MethodBase *rfbase)
initialize pointers 
 
void SetRuleMinDist(Double_t d)
 
Abstract ClassifierFactory template that handles arbitrary types. 
 
void FillCut(TH2F *h2, const TMVA::Rule *rule, Int_t vind)
Fill cut. 
 
RuleFitParams fRuleFitParams
 
Double_t EvalEvent(const Event &e)
evaluate single event 
 
std::vector< const TMVA::DecisionTree * > fForest
 
void UseCoefficientsVisHists()
 
void Initialize(const TMVA::MethodBase *rfbase)
initialize the parameters of the RuleFit method and make rules 
 
Double_t CalcWeightSum(const std::vector< const TMVA::Event *> *events, UInt_t neve=0)
calculate the sum of weights 
 
const MethodRuleFit * GetMethodRuleFit() const
 
std::vector< const TMVA::Event * > fTrainingEvents
 
UInt_t GetNTreeSample() const
 
void SetGDPathStep(Double_t s)
 
void SetRuleMinDist(Double_t d)
 
void SetImportanceCut(Double_t minimp=0)