89 #include "RConfigure.h" 100 #ifdef R__HAS_MATHMORE 109 struct LikelihoodFunction {
111 fFunc(f), fPrior(prior),
112 fOffset(offset), fMaxL(0) {
113 fFunc.binding().resetNumCall();
116 void SetPrior(
RooFunctor * prior) { fPrior = prior; }
119 double nll = fFunc(x) - fOffset;
122 if (fPrior) likelihood *= (*fPrior)(
x);
124 int nCalls = fFunc.binding().numCall();
125 if (nCalls > 0 && nCalls % 1000 == 0) {
127 <<
" x0 " << x[0] <<
" nll = " << nll+fOffset;
130 <<
" max Likelihood " << fMaxL << std::endl;
133 if (likelihood > fMaxL ) {
135 if ( likelihood > 1.E10) {
136 ooccoutW((
TObject*)0,
Eval) <<
"LikelihoodFunction::() WARNING - Huge likelihood value found for parameters ";
137 for (
int i = 0; i < fFunc.nObs(); ++i)
149 assert(fFunc.nObs() == 1);
151 return (*
this)(&tmp);
157 mutable double fMaxL;
171 fPriorFunc(std::shared_ptr<RooFunctor>((
RooFunctor*)0)),
172 fLikelihood(fFunctor, 0, nllMinimum),
176 fNorm(1.0), fNormErr(0.0), fOffset(0), fMaxPOI(0),
177 fHasNorm(
false), fUseOldValues(
true), fError(
false)
182 fLikelihood.SetPrior(fPriorFunc.get() );
185 fIntegrator.SetFunction(fLikelihood, bindParams.
getSize() );
188 <<
" nllMinimum is " << nllMinimum << std::endl;
190 std::vector<double>
par(bindParams.
getSize());
191 for (
unsigned int i = 0; i < fXmin.size(); ++i) {
197 <<
" in interval [ " << fXmin[i] <<
" , " << fXmax[i] <<
" ] " << std::endl;
206 fNorm = (*this)( fMaxPOI );
209 fNormCdfValues.insert(std::make_pair(fXmin[0], 0) );
210 fNormCdfValues.insert(std::make_pair(fXmax[0], 1.0) );
217 PosteriorCdfFunction(
const PosteriorCdfFunction & rhs) :
219 fFunctor(rhs.fFunctor),
221 fPriorFunc(rhs.fPriorFunc),
222 fLikelihood(fFunctor, fPriorFunc.get(), rhs.fLikelihood.fOffset),
227 fNormErr( rhs.fNormErr),
228 fOffset(rhs.fOffset),
229 fMaxPOI(rhs.fMaxPOI),
230 fHasNorm(rhs.fHasNorm),
231 fUseOldValues(rhs.fUseOldValues),
233 fNormCdfValues(rhs.fNormCdfValues)
235 fIntegrator.SetFunction(fLikelihood, fXmin.size() );
244 bool HasError()
const {
return fError; }
249 return new PosteriorCdfFunction(*
this);
253 void SetOffset(
double offset) { fOffset = offset; }
258 PosteriorCdfFunction&
operator=(
const PosteriorCdfFunction &) {
262 double DoEval (
double x)
const {
266 if (x <= fXmin[0] )
return -fOffset;
268 if (x >= fMaxPOI && fHasNorm)
return 1. - fOffset;
272 if (fHasNorm && fUseOldValues) {
274 std::map<double,double>::iterator itr = fNormCdfValues.upper_bound(x);
276 if (itr != fNormCdfValues.end() ) {
277 fXmin[0] = itr->first;
278 normcdf0 = itr->second;
284 fFunctor.binding().resetNumCall();
286 double cdf = fIntegrator.Integral(&fXmin[0],&fXmax[0]);
287 double error = fIntegrator.Error();
288 double normcdf = cdf/fNorm;
291 << fXmax[0] <<
"] integral = " << cdf <<
" +/- " << error
292 <<
" norm-integ = " << normcdf <<
" cdf(x) = " << normcdf+normcdf0
293 <<
" ncalls = " << fFunctor.binding().numCall() << std::endl;
295 if (
TMath::IsNaN(cdf) || cdf > std::numeric_limits<double>::max()) {
301 if (cdf != 0 && error/cdf > 0.2 )
303 <<
" x = " << x <<
" cdf(x) = " << cdf <<
" +/- " << error << std::endl;
307 << cdf <<
" +/- " << error << std::endl;
316 fNormCdfValues.insert(std::make_pair(x, normcdf) );
319 double errnorm =
sqrt( error*error + normcdf*normcdf * fNormErr * fNormErr )/fNorm;
320 if (normcdf > 1. + 3 * errnorm) {
322 <<
" x = " << x <<
" normcdf(x) = " << normcdf <<
" +/- " << error/fNorm << std::endl;
325 return normcdf - fOffset;
329 mutable std::shared_ptr<RooFunctor> fPriorFunc;
330 LikelihoodFunction fLikelihood;
332 mutable std::vector<double> fXmin;
333 mutable std::vector<double> fXmax;
335 mutable double fNormErr;
341 mutable std::map<double,double> fNormCdfValues;
355 norm = 1.0,
double nllOffset = 0,
int niter = 0) :
357 fPriorFunc(std::shared_ptr<RooFunctor>((
RooFunctor*)0)),
358 fLikelihood(fFunctor, 0, nllOffset),
368 fLikelihood.SetPrior(fPriorFunc.get() );
372 for (
unsigned int i = 0; i < fXmin.size(); ++i) {
377 <<
" in interval [" << fXmin[i] <<
" , " << fXmax[i] <<
" ] " << std::endl;
379 if (fXmin.size() == 1) {
382 fIntegratorOneDim->SetFunction(fLikelihood);
387 else if (fXmin.size() > 1) {
389 fIntegratorMultiDim->SetFunction(fLikelihood, fXmin.size());
393 fIntegratorMultiDim->SetOptions(opt);
407 double Error()
const {
return fError;}
411 double DoEval (
double x)
const {
416 fFunctor.binding().resetNumCall();
420 if (fXmin.size() == 1) {
421 f = fIntegratorOneDim->Integral(fXmin[0],fXmax[0]);
422 error = fIntegratorOneDim->Error();
424 else if (fXmin.size() > 1) {
425 f = fIntegratorMultiDim->Integral(&fXmin[0],&fXmax[0]);
426 error = fIntegratorMultiDim->Error();
434 << x <<
"\tf(x) = " << f <<
" +/- " << error
435 <<
" norm-f(x) = " << f/fNorm
436 <<
" ncalls = " << fFunctor.binding().numCall() << std::endl;
441 if (f != 0 && error/f > 0.2 )
443 << fXmin.size() <<
" Dim is larger than 20 % " 444 <<
"x = " << x <<
" p(x) = " << f <<
" +/- " << error << std::endl;
446 fError = error / fNorm;
451 mutable std::shared_ptr<RooFunctor> fPriorFunc;
452 LikelihoodFunction fLikelihood;
454 std::unique_ptr<ROOT::Math::Integrator> fIntegratorOneDim;
455 std::unique_ptr<ROOT::Math::IntegratorMultiDim> fIntegratorMultiDim;
456 std::vector<double> fXmin;
457 std::vector<double> fXmax;
459 mutable double fError;
471 nllOffset = 0,
int niter = 0,
bool redoToys =
true ) :
473 fPriorFunc(std::shared_ptr<RooFunctor>((
RooFunctor*)0)),
474 fLikelihood(fFunctor, 0, nllOffset),
477 fNuisParams(nuisParams),
479 fNumIterations(niter),
483 if (niter == 0) fNumIterations = 100;
487 fLikelihood.SetPrior(fPriorFunc.get() );
490 ooccoutI((
TObject*)0,
InputArguments) <<
"PosteriorFunctionFromToyMC::Evaluate the posterior function by randomizing the nuisances: niter " << fNumIterations << std::endl;
492 ooccoutI((
TObject*)0,
InputArguments) <<
"PosteriorFunctionFromToyMC::Pdf used for randomizing the nuisance is " << fPdf->GetName() << std::endl;
495 for (
int i = 0; i < fNuisParams.getSize(); ++i) {
496 if (!vars->
find( fNuisParams[i].GetName() ) ) {
498 <<
" is not part of sampling pdf. " 499 <<
"they will be treated as constant " << std::endl;
505 ooccoutI((
TObject*)0,
InputArguments) <<
"PosteriorFunctionFromToyMC::Generate nuisance toys only one time (for all POI points)" << std::endl;
510 virtual ~PosteriorFunctionFromToyMC() {
if (fGenParams)
delete fGenParams; }
513 void GenerateToys()
const {
514 if (fGenParams)
delete fGenParams;
515 fGenParams = fPdf->generate(fNuisParams, fNumIterations);
521 double Error()
const {
return fError;}
533 double DoEval(
double x)
const {
535 int npar = fNuisParams.getSize();
540 if (fRedoToys) GenerateToys();
541 if (!fGenParams)
return 0;
551 for(
int iter=0; iter<fNumIterations; ++iter) {
554 std::vector<double> p(npar);
555 for (
int i = 0; i < npar; ++i) {
556 const RooArgSet* genset=fGenParams->get(iter);
565 double fval = fLikelihood( &p.front() );
571 double nuisPdfVal = fPdf->getVal(&arg);
575 if( fval > std::numeric_limits<double>::max() ) {
577 <<
"Likelihood evaluates to infinity " << std::endl;
580 for (
int i = 0; i < npar; ++i)
589 <<
"Likelihood is a NaN " << std::endl;
592 for (
int i = 0; i < npar; ++i)
606 double val = sum/double(fNumIterations);
607 double dval2 = std::max( sum2/
double(fNumIterations) - val*val, 0.0);
608 fError =
std::sqrt( dval2 / fNumIterations);
612 << x <<
"\tp(x) = " << val <<
" +/- " << fError << std::endl;
615 if (val != 0 && fError/val > 0.2 ) {
617 <<
" - Error in estimating posterior is larger than 20% ! " 618 <<
"x = " << x <<
" p(x) = " << val <<
" +/- " << fError << std::endl;
626 mutable std::shared_ptr<RooFunctor> fPriorFunc;
627 LikelihoodFunction fLikelihood;
633 mutable double fError;
645 BayesianCalculator::BayesianCalculator() :
650 fProductPdf (0), fLogLike(0), fLikelihood (0), fIntegratedLikelihood (0), fPosteriorPdf(0),
651 fPosteriorFunction(0), fApproxPosterior(0),
652 fLower(0), fUpper(0),
654 fSize(0.05), fLeftSideFraction(0.5),
655 fBrfPrecision(0.00005),
658 fValidInterval(false)
701 fPdf(model.GetPdf()),
788 coutE(
InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing pdf model" << std::endl;
792 coutE(
InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing parameter of interest" << std::endl;
796 coutE(
InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - current implementation works only on 1D intervals" << std::endl;
812 ccoutD(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : " 821 if ( nllVal > std::numeric_limits<double>::max() ) {
822 coutE(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : " 823 <<
" Negative log likelihood evaluates to infinity " << std::endl
824 <<
" Non-const Parameter values : ";
826 for (
int i = 0; i < p.
getSize(); ++i) {
831 ccoutE(
Eval) <<
"-- Perform a full likelihood fit of the model before or set more reasonable parameter values" 833 coutE(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : " <<
" cannot compute posterior function " << std::endl;
853 coutI(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : " 854 <<
" nll value " << nllVal <<
" poi value = " << poi->
getVal() << std::endl;
863 coutI(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = " 868 delete constrainedParams;
873 ccoutD(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : use ROOFIT integration " 876 #ifdef DOLATER // (not clear why this does not work) 878 TString likeName = TString(
"likelihood_times_prior_") + TString(
fPriorPdf->
GetName());
880 formula.Form(
"exp(-@0+%f+log(@1))",
fNLLMin);
906 TString likeName = TString(
"likelihood_times_prior_") + TString(pdfAndPrior->
GetName());
908 formula.Form(
"exp(-@0+%f)",
fNLLMin);
931 bool doToysEveryIteration =
true;
937 ccoutI(
Eval) <<
"BayesianCalculator::GetPosteriorFunction : no nuisance pdf is provided, try using global pdf (this will be slower)" 943 TString
name =
"toyposteriorfunction_from_";
959 TString
name =
"posteriorfunction_from_";
985 if (!plike)
return 0;
989 TString posteriorName = this->
GetName() + TString(
"_posteriorPdf_") + plike->
GetName();
1016 if (!posterior)
return 0;
1025 if (!plot)
return 0;
1030 plot->
SetTitle(TString(
"Posterior probability of parameter \"")+TString(poi->
GetName())+TString(
"\""));
1098 coutW(
Eval) <<
"BayesianCalculator::GetInterval - recomputing interval for the same CL and same model" << std::endl;
1102 coutE(
Eval) <<
"BayesianCalculator::GetInterval - no parameter of interest is set " << std::endl;
1141 coutW(
Eval) <<
"BayesianCalculator::GetInterval - computing integral from cdf failed - do a scan in " 1159 coutE(
Eval) <<
"BayesianCalculator::GetInterval - cannot compute a valid interval - return a dummy [1,0] interval" 1163 coutI(
Eval) <<
"BayesianCalculator::GetInterval - found a valid interval : [" <<
fLower <<
" , " 1164 <<
fUpper <<
" ]" << std::endl;
1167 TString interval_name = TString(
"BayesianInterval_a") + TString(this->
GetName());
1169 interval->
SetTitle(
"SimpleInterval from BayesianCalculator");
1194 coutI(
Eval) <<
"BayesianCalculator: Compute interval using RooFit: posteriorPdf + createCdf + RooBrentRootFinder " << std::endl;
1207 if (!cdf_bind)
return;
1212 double tmpVal = poi->
getVal();
1215 if (lowerCutOff > 0) {
1216 double y = lowerCutOff;
1222 if (upperCutOff < 1.0) {
1223 double y=upperCutOff;
1228 if (!ret)
coutE(
Eval) <<
"BayesianCalculator::GetInterval " 1229 <<
"Error returned from Root finder, estimated interval is not fully correct" 1248 coutI(
InputArguments) <<
"BayesianCalculator:GetInterval Compute the interval from the posterior cdf " << std::endl;
1253 coutE(
InputArguments) <<
"BayesianCalculator::GetInterval() cannot make posterior Function " << std::endl;
1267 if( cdf.HasError() ) {
1268 coutE(
Eval) <<
"BayesianCalculator: Numerical error computing CDF integral - try a different method " << std::endl;
1276 ccoutD(
Eval) <<
"BayesianCalculator::GetInterval - finding roots of posterior using RF " << rf.
Name()
1279 if (lowerCutOff > 0) {
1280 cdf.SetOffset(lowerCutOff);
1281 ccoutD(
NumIntegration) <<
"Integrating posterior to get cdf and search lower limit at p =" << lowerCutOff << std::endl;
1283 if( cdf.HasError() )
1284 coutW(
Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1286 coutE(
NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching lower limit !" << std::endl;
1294 if (upperCutOff < 1.0) {
1295 cdf.SetOffset(upperCutOff);
1296 ccoutD(
NumIntegration) <<
"Integrating posterior to get cdf and search upper interval limit at p =" << upperCutOff << std::endl;
1298 if( cdf.HasError() )
1299 coutW(
Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1301 coutE(
NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching upper limit !" << std::endl;
1332 if (!posterior)
return;
1340 coutI(
Eval) <<
"BayesianCalculator - scan posterior function in nbins = " << tmp->
GetNpx() << std::endl;
1346 TString
name = posterior->
GetName() + TString(
"_approx");
1347 TString title = posterior->
GetTitle() + TString(
"_approx");
1367 ccoutD(
Eval) <<
"BayesianCalculator: Compute interval from the approximate posterior " << std::endl;
1373 double limits[2] = {0,0};
1374 prob[0] = lowerCutOff;
1375 prob[1] = upperCutOff;
1386 coutI(
Eval) <<
"BayesianCalculator - computing shortest interval with CL = " << 1.-
fSize << std::endl;
1398 std::vector<int> index(n);
1402 double actualCL = 0;
1407 for (
int i = 0; i <
n; ++i) {
1409 double p = bins[ idx] /
norm;
1411 if (sum > 1.-
fSize ) {
1422 ccoutD(
Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = " 1423 << actualCL <<
" difference from requested is " << (actualCL-(1.-
fSize))/
fSize*100. <<
"% " 1424 <<
" limits are [ " << lower <<
" , " <<
" upper ] " << std::endl;
1427 if (lower < upper) {
1433 if ( std::abs(actualCL-(1.-
fSize)) > 0.1*(1.-
fSize) )
1434 coutW(
Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = " 1435 << actualCL <<
" differs more than 10% from desired CL value - must increase nbins " 1436 << n <<
" to an higher value " << std::endl;
1439 coutE(
Eval) <<
"BayesianCalculator::ComputeShortestInterval " << n <<
" bins are not sufficient " << std::endl;
User Class to find the Root of one dimensional functions.
virtual RooAbsReal * createNLL(RooAbsData &data, const RooLinkedList &cmdList)
Construct representation of -log(L) of PDFwith given dataset.
virtual Double_t getMin(const char *name=0) const
virtual const char * GetName() const
Returns name of object.
std::string GetName(const std::string &scope_name)
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum)
Compute Quantiles for density distribution of this function.
RooAbsPdf * GetPosteriorPdf() const
Build and return the posterior pdf (i.e posterior function normalized to all range of poi) Note that ...
static IntegrationMultiDim::Type GetType(const char *name)
static function to get the enumeration from a string
static long int sum(long int i)
ROOT::Math::IGenFunction * fPosteriorFunction
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
double Root() const
Return the current and latest estimate of the Root.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
RooCmdArg DrawOption(const char *opt)
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
virtual Int_t GetNpx() const
virtual void SetNpx(Int_t npx=100)
Set the number of points used to draw the function.
virtual Double_t getMax(const char *name=0) const
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Double_t getVal(const RooArgSet *set=0) const
const Double_t * GetArray() const
void SetIntegrationType(const char *type)
set the integration type (possible type are) :
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
static void clearEvalErrorLog()
Clear the stack of evaluation error messages.
void SetNCalls(unsigned int calls)
set maximum number of function calls
double GetMode() const
Returns the value of the parameter for the point in parameter-space that is the most likely...
void SetTitle(const char *name)
Set the title of the RooPlot to 'title'.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
RooCFunction1Binding is a templated implementation of class RooAbsReal that binds generic C(++) funct...
TRObject operator()(const T1 &t1) const
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
RooAbsReal * createCdf(const RooArgSet &iset, const RooArgSet &nset=RooArgSet())
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset...
RooCmdArg Range(const char *rangeName, Bool_t adjustNorm=kTRUE)
void Print(std::ostream &os=std::cout) const
print all the options
static void setEvalErrorLoggingMode(ErrorLoggingMode m)
Set evaluation error logging mode.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
double cdf(double *x, double *p)
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
const char * Name() const
Return the current and latest estimate of the lower value of the Root-finding interval (for bracketin...
void ApproximatePosterior() const
approximate posterior in nbins using a TF1 scan the poi values and evaluate the posterior at each poi...
RooPlot * GetPosteriorPlot(bool norm=false, double precision=0.01) const
return a RooPlot with the posterior and the credibility region NOTE: User takes ownership of the retu...
void ClearAll() const
clear all cached pdf objects
User class for performing function minimization.
void Error(const char *location, const char *msgfmt,...)
RooAbsReal * fIntegratedLikelihood
void ComputeIntervalUsingRooFit(double c1, double c2) const
internal function compute the interval using RooFit
RooRealVar represents a fundamental (non-derived) real valued object.
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return NULL if not existing)
virtual void setVal(Double_t value)
Set value of variable to 'value'.
virtual Bool_t findRoot(Double_t &result, Double_t xlo, Double_t xhi, Double_t value=0) const
Do the root finding using the Brent-Decker method.
const RooArgSet * GetConditionalObservables() const
get RooArgSet for conditional observables (return NULL if not existing)
RooAbsReal * createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create an object that represents the integral of the function over one or more observables listed in ...
Numerical multi dimensional integration options.
virtual Double_t ConfidenceLevel() const
Get the Confidence level for the test.
static Int_t numEvalErrors()
Return the number of logged evaluation errors since the last clearing.
IBaseFunctionOneDim IGenFunction
RooAbsArg * first() const
static IntegrationOneDim::Type GetType(const char *name)
static function to get the enumeration from a string
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
Implement the abstract 1-dimensional root finding interface using the Brent-Decker method...
User Class for performing numerical integration of a function in one dimension.
void setTol(Double_t tol)
RooAbsData is the common abstract base class for binned and unbinned datasets.
const ROOT::Math::RootFinder::EType kRootFinderType
tomato 1-D histogram with a double per channel (see TH1 documentation)}
RooDataSet is a container class to hold unbinned data.
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
A RooPlot is a plot frame and a container for graphics objects within that frame. ...
virtual void SetModel(const ModelConfig &model)
set the model to use The model pdf, prior pdf, parameter of interest and nuisances will be taken acco...
virtual void SetName(const char *name)
Change the name of this histogram.
void ComputeShortestInterval() const
compute the shortest interval
Namespace for the RooStats classes.
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
RooAbsReal * GetPosteriorFunction() const
Build and return the posterior function (not normalized) as a RooAbsReal the posterior is obtained fr...
RooCmdArg Precision(Double_t prec)
void ComputeIntervalFromCdf(double c1, double c2) const
internal function compute the interval using Cdf integration
RooCmdArg FillColor(Color_t color)
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
RooAbsFunc * bindVars(const RooArgSet &vars, const RooArgSet *nset=0, Bool_t clipInvalid=kFALSE) const
Create an interface adaptor f(vars) that binds us to the specified variables (in arbitrary order)...
RooArgSet fConditionalObs
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
virtual double FValMinimum() const
Return function value at current estimate of the minimum.
RooArgSet fNuisanceParameters
TF1 * asTF(const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const
Return a ROOT TF1,2,3 object bound to this RooAbsReal with given definition of observables and parame...
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Binding & operator=(OUT(*fun)(void))
Mother of all ROOT objects.
void RemoveConstantParameters(RooArgSet *set)
RooAbsPdf * fPosteriorPdf
BayesianCalculator()
default constructor
SimpleInterval is a concrete implementation of the ConfInterval interface.
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
User class for performing multidimensional integration.
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
RooFunctor * functor(const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const
Return a RooFunctor object bound to this RooAbsReal with given definition of observables and paramete...
RooGenericPdf is a concrete implementation of a probability density function, which takes a RooArgLis...
virtual ~BayesianCalculator()
virtual SimpleInterval * GetInterval() const
Compute the interval.
Lightweight interface adaptor that exports a RooAbsPdf as a functor.
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function.
void ComputeIntervalFromApproxPosterior(double c1, double c2) const
compute the interval using the approximate posterior function
virtual bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10)
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
Functor1D class for one-dimensional functions.
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
RooCmdArg ConditionalObservables(const RooArgSet &set)
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
double norm(double *x, double *p)
Abstract interface for evaluating a real-valued function of one real variable and performing numerica...
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
bool Solve(Function &f, Derivative &d, double start, int maxIter=100, double absTol=1E-8, double relTol=1E-10)
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
RooCmdArg Constrain(const RooArgSet ¶ms)
virtual const char * GetTitle() const
Returns title of object.