Logo ROOT   6.10/09
Reference Guide
LorentzVector.h
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Authors: W. Brown, M. Fischler, L. Moneta 2005
3 
4 /**********************************************************************
5  * *
6  * Copyright (c) 2005 , LCG ROOT MathLib Team *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Header file for class LorentzVector
12 //
13 // Created by: moneta at Tue May 31 17:06:09 2005
14 // Major mods by: fischler at Wed Jul 20 2005
15 //
16 // Last update: $Id$
17 //
18 #ifndef ROOT_Math_GenVector_LorentzVector
19 #define ROOT_Math_GenVector_LorentzVector 1
20 
22 
24 
26 
27 #include <cmath>
28 
29 namespace ROOT {
30 
31  namespace Math {
32 
33 //__________________________________________________________________________________________
34  /**
35  Class describing a generic LorentzVector in the 4D space-time,
36  using the specified coordinate system for the spatial vector part.
37  The metric used for the LorentzVector is (-,-,-,+).
38  In the case of LorentzVector we don't distinguish the concepts
39  of points and displacement vectors as in the 3D case,
40  since the main use case for 4D Vectors is to describe the kinematics of
41  relativistic particles. A LorentzVector behaves like a
42  DisplacementVector in 4D. The Minkowski components could be viewed as
43  v and t, or for kinematic 4-vectors, as p and E.
44 
45  @ingroup GenVector
46  */
47  template< class CoordSystem >
48  class LorentzVector {
49 
50  public:
51 
52  // ------ ctors ------
53 
54  typedef typename CoordSystem::Scalar Scalar;
55  typedef CoordSystem CoordinateType;
56 
57  /**
58  default constructor of an empty vector (Px = Py = Pz = E = 0 )
59  */
61 
62  /**
63  generic constructors from four scalar values.
64  The association between values and coordinate depends on the
65  coordinate system. For PxPyPzE4D,
66  \param a scalar value (Px)
67  \param b scalar value (Py)
68  \param c scalar value (Pz)
69  \param d scalar value (E)
70  */
71  LorentzVector(const Scalar & a,
72  const Scalar & b,
73  const Scalar & c,
74  const Scalar & d) :
75  fCoordinates(a , b, c, d) { }
76 
77  /**
78  constructor from a LorentzVector expressed in different
79  coordinates, or using a different Scalar type
80  */
81  template< class Coords >
82  explicit LorentzVector(const LorentzVector<Coords> & v ) :
83  fCoordinates( v.Coordinates() ) { }
84 
85  /**
86  Construct from a foreign 4D vector type, for example, HepLorentzVector
87  Precondition: v must implement methods x(), y(), z(), and t()
88  */
89  template<class ForeignLorentzVector>
90  explicit LorentzVector( const ForeignLorentzVector & v) :
91  fCoordinates(PxPyPzE4D<Scalar>( v.x(), v.y(), v.z(), v.t() ) ) { }
92 
93 #ifdef LATER
94  /**
95  construct from a generic linear algebra vector implementing operator []
96  and with a size of at least 4. This could be also a C array
97  In this case v[0] is the first data member
98  ( Px for a PxPyPzE4D base)
99  \param v LA vector
100  \param index0 index of first vector element (Px)
101  */
102  template< class LAVector >
103  explicit LorentzVector(const LAVector & v, size_t index0 ) {
104  fCoordinates = CoordSystem ( v[index0], v[index0+1], v[index0+2], v[index0+3] );
105  }
106 #endif
107 
108 
109  // ------ assignment ------
110 
111  /**
112  Assignment operator from a lorentz vector of arbitrary type
113  */
114  template< class OtherCoords >
117  return *this;
118  }
119 
120  /**
121  assignment from any other Lorentz vector implementing
122  x(), y(), z() and t()
123  */
124  template<class ForeignLorentzVector>
125  LorentzVector & operator = ( const ForeignLorentzVector & v) {
126  SetXYZT( v.x(), v.y(), v.z(), v.t() );
127  return *this;
128  }
129 
130 #ifdef LATER
131  /**
132  assign from a generic linear algebra vector implementing operator []
133  and with a size of at least 4
134  In this case v[0] is the first data member
135  ( Px for a PxPyPzE4D base)
136  \param v LA vector
137  \param index0 index of first vector element (Px)
138  */
139  template< class LAVector >
140  LorentzVector & AssignFrom(const LAVector & v, size_t index0=0 ) {
141  fCoordinates.SetCoordinates( v[index0], v[index0+1], v[index0+2], v[index0+3] );
142  return *this;
143  }
144 #endif
145 
146  // ------ Set, Get, and access coordinate data ------
147 
148  /**
149  Retrieve a const reference to the coordinates object
150  */
151  const CoordSystem & Coordinates() const {
152  return fCoordinates;
153  }
154 
155  /**
156  Set internal data based on an array of 4 Scalar numbers
157  */
159  fCoordinates.SetCoordinates(src);
160  return *this;
161  }
162 
163  /**
164  Set internal data based on 4 Scalar numbers
165  */
166  LorentzVector<CoordSystem>& SetCoordinates( Scalar a, Scalar b, Scalar c, Scalar d ) {
167  fCoordinates.SetCoordinates(a, b, c, d);
168  return *this;
169  }
170 
171  /**
172  Set internal data based on 4 Scalars at *begin to *end
173  */
174 //#ifdef NDEBUG
175  //this does not compile in CINT
176 // template< class IT >
177 // LorentzVector<CoordSystem>& SetCoordinates( IT begin, IT /* end */ ) {
178 // #endif
179  template< class IT >
180 #ifndef NDEBUG
182 #else
183  LorentzVector<CoordSystem>& SetCoordinates( IT begin, IT /* end */ ) {
184 #endif
185  IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
186  assert (++begin==end);
187  SetCoordinates (*a,*b,*c,*d);
188  return *this;
189  }
190 
191  /**
192  get internal data into 4 Scalar numbers
193  */
194  void GetCoordinates( Scalar& a, Scalar& b, Scalar& c, Scalar & d ) const
195  { fCoordinates.GetCoordinates(a, b, c, d); }
196 
197  /**
198  get internal data into an array of 4 Scalar numbers
199  */
200  void GetCoordinates( Scalar dest[] ) const
201  { fCoordinates.GetCoordinates(dest); }
202 
203  /**
204  get internal data into 4 Scalars at *begin to *end
205  */
206  template <class IT>
207 #ifndef NDEBUG
208  void GetCoordinates( IT begin, IT end ) const
209 #else
210  void GetCoordinates( IT begin, IT /* end */ ) const
211 #endif
212  { IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
213  assert (++begin==end);
214  GetCoordinates (*a,*b,*c,*d);
215  }
216 
217  /**
218  get internal data into 4 Scalars at *begin
219  */
220  template <class IT>
221  void GetCoordinates( IT begin ) const {
222  Scalar a,b,c,d = 0;
223  GetCoordinates (a,b,c,d);
224  *begin++ = a;
225  *begin++ = b;
226  *begin++ = c;
227  *begin = d;
228  }
229 
230  /**
231  set the values of the vector from the cartesian components (x,y,z,t)
232  (if the vector is held in another coordinates, like (Pt,eta,phi,m)
233  then (x, y, z, t) are converted to that form)
234  */
235  LorentzVector<CoordSystem>& SetXYZT (Scalar xx, Scalar yy, Scalar zz, Scalar tt) {
236  fCoordinates.SetPxPyPzE(xx,yy,zz,tt);
237  return *this;
238  }
239  LorentzVector<CoordSystem>& SetPxPyPzE (Scalar xx, Scalar yy, Scalar zz, Scalar ee) {
240  fCoordinates.SetPxPyPzE(xx,yy,zz,ee);
241  return *this;
242  }
243 
244  // ------------------- Equality -----------------
245 
246  /**
247  Exact equality
248  */
249  bool operator==(const LorentzVector & rhs) const {
250  return fCoordinates==rhs.fCoordinates;
251  }
252  bool operator!= (const LorentzVector & rhs) const {
253  return !(operator==(rhs));
254  }
255 
256  // ------ Individual element access, in various coordinate systems ------
257 
258  // individual coordinate accessors in various coordinate systems
259 
260  /**
261  spatial X component
262  */
263  Scalar Px() const { return fCoordinates.Px(); }
264  Scalar X() const { return fCoordinates.Px(); }
265  /**
266  spatial Y component
267  */
268  Scalar Py() const { return fCoordinates.Py(); }
269  Scalar Y() const { return fCoordinates.Py(); }
270  /**
271  spatial Z component
272  */
273  Scalar Pz() const { return fCoordinates.Pz(); }
274  Scalar Z() const { return fCoordinates.Pz(); }
275  /**
276  return 4-th component (time, or energy for a 4-momentum vector)
277  */
278  Scalar E() const { return fCoordinates.E(); }
279  Scalar T() const { return fCoordinates.E(); }
280  /**
281  return magnitude (mass) squared M2 = T**2 - X**2 - Y**2 - Z**2
282  (we use -,-,-,+ metric)
283  */
284  Scalar M2() const { return fCoordinates.M2(); }
285  /**
286  return magnitude (mass) using the (-,-,-,+) metric.
287  If M2 is negative (space-like vector) a GenVector_exception
288  is suggested and if continuing, - sqrt( -M2) is returned
289  */
290  Scalar M() const { return fCoordinates.M();}
291  /**
292  return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
293  */
294  Scalar R() const { return fCoordinates.R(); }
295  Scalar P() const { return fCoordinates.R(); }
296  /**
297  return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
298  */
299  Scalar P2() const { return P() * P(); }
300  /**
301  return the square of the transverse spatial component ( X**2 + Y**2 )
302  */
303  Scalar Perp2( ) const { return fCoordinates.Perp2();}
304 
305  /**
306  return the transverse spatial component sqrt ( X**2 + Y**2 )
307  */
308  Scalar Pt() const { return fCoordinates.Pt(); }
309  Scalar Rho() const { return fCoordinates.Pt(); }
310 
311  /**
312  return the transverse mass squared
313  \f[ m_t^2 = E^2 - p{_z}^2 \f]
314  */
315  Scalar Mt2() const { return fCoordinates.Mt2(); }
316 
317  /**
318  return the transverse mass
319  \f[ \sqrt{ m_t^2 = E^2 - p{_z}^2} X sign(E^ - p{_z}^2) \f]
320  */
321  Scalar Mt() const { return fCoordinates.Mt(); }
322 
323  /**
324  return the transverse energy squared
325  \f[ e_t = \frac{E^2 p_{\perp}^2 }{ |p|^2 } \f]
326  */
327  Scalar Et2() const { return fCoordinates.Et2(); }
328 
329  /**
330  return the transverse energy
331  \f[ e_t = \sqrt{ \frac{E^2 p_{\perp}^2 }{ |p|^2 } } X sign(E) \f]
332  */
333  Scalar Et() const { return fCoordinates.Et(); }
334 
335  /**
336  azimuthal Angle
337  */
338  Scalar Phi() const { return fCoordinates.Phi();}
339 
340  /**
341  polar Angle
342  */
343  Scalar Theta() const { return fCoordinates.Theta(); }
344 
345  /**
346  pseudorapidity
347  \f[ \eta = - \ln { \tan { \frac { \theta} {2} } } \f]
348  */
349  Scalar Eta() const { return fCoordinates.Eta(); }
350 
351  /**
352  get the spatial components of the Vector in a
353  DisplacementVector based on Cartesian Coordinates
354  */
356  return ::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> >( X(), Y(), Z() );
357  }
358 
359  // ------ Operations combining two Lorentz vectors ------
360 
361  /**
362  scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+)
363  Enable the product using any other LorentzVector implementing
364  the x(), y() , y() and t() member functions
365  \param q any LorentzVector implementing the x(), y() , z() and t()
366  member functions
367  \return the result of v.q of type according to the base scalar type of v
368  */
369 
370  template< class OtherLorentzVector >
371  Scalar Dot(const OtherLorentzVector & q) const {
372  return t()*q.t() - x()*q.x() - y()*q.y() - z()*q.z();
373  }
374 
375  /**
376  Self addition with another Vector ( v+= q )
377  Enable the addition with any other LorentzVector
378  \param q any LorentzVector implementing the x(), y() , z() and t()
379  member functions
380  */
381  template< class OtherLorentzVector >
382  inline LorentzVector & operator += ( const OtherLorentzVector & q)
383  {
384  SetXYZT( x() + q.x(), y() + q.y(), z() + q.z(), t() + q.t() );
385  return *this;
386  }
387 
388  /**
389  Self subtraction of another Vector from this ( v-= q )
390  Enable the addition with any other LorentzVector
391  \param q any LorentzVector implementing the x(), y() , z() and t()
392  member functions
393  */
394  template< class OtherLorentzVector >
395  LorentzVector & operator -= ( const OtherLorentzVector & q) {
396  SetXYZT( x() - q.x(), y() - q.y(), z() - q.z(), t() - q.t() );
397  return *this;
398  }
399 
400  /**
401  addition of two LorentzVectors (v3 = v1 + v2)
402  Enable the addition with any other LorentzVector
403  \param v2 any LorentzVector implementing the x(), y() , z() and t()
404  member functions
405  \return a new LorentzVector of the same type as v1
406  */
407  template<class OtherLorentzVector>
408  LorentzVector operator + ( const OtherLorentzVector & v2) const
409  {
411  v3 += v2;
412  return v3;
413  }
414 
415  /**
416  subtraction of two LorentzVectors (v3 = v1 - v2)
417  Enable the subtraction of any other LorentzVector
418  \param v2 any LorentzVector implementing the x(), y() , z() and t()
419  member functions
420  \return a new LorentzVector of the same type as v1
421  */
422  template<class OtherLorentzVector>
423  LorentzVector operator - ( const OtherLorentzVector & v2) const {
425  v3 -= v2;
426  return v3;
427  }
428 
429  //--- scaling operations ------
430 
431  /**
432  multiplication by a scalar quantity v *= a
433  */
435  fCoordinates.Scale(a);
436  return *this;
437  }
438 
439  /**
440  division by a scalar quantity v /= a
441  */
443  fCoordinates.Scale(1/a);
444  return *this;
445  }
446 
447  /**
448  product of a LorentzVector by a scalar quantity
449  \param a scalar quantity of type a
450  \return a new mathcoreLorentzVector q = v * a same type as v
451  */
452  LorentzVector operator * ( const Scalar & a) const {
453  LorentzVector tmp(*this);
454  tmp *= a;
455  return tmp;
456  }
457 
458  /**
459  Divide a LorentzVector by a scalar quantity
460  \param a scalar quantity of type a
461  \return a new mathcoreLorentzVector q = v / a same type as v
462  */
463  LorentzVector<CoordSystem> operator / ( const Scalar & a) const {
464  LorentzVector<CoordSystem> tmp(*this);
465  tmp /= a;
466  return tmp;
467  }
468 
469  /**
470  Negative of a LorentzVector (q = - v )
471  \return a new LorentzVector with opposite direction and time
472  */
474  //LorentzVector<CoordinateType> v(*this);
475  //v.Negate();
476  return operator*( Scalar(-1) );
477  }
479  return *this;
480  }
481 
482  // ---- Relativistic Properties ----
483 
484  /**
485  Rapidity relative to the Z axis: .5 log [(E+Pz)/(E-Pz)]
486  */
487  Scalar Rapidity() const {
488  // TODO - It would be good to check that E > Pz and use the Throw()
489  // mechanism or at least load a NAN if not.
490  // We should then move the code to a .cpp file.
491  const Scalar ee = E();
492  const Scalar ppz = Pz();
493  return Scalar(0.5) * log((ee + ppz) / (ee - ppz));
494  }
495 
496  /**
497  Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)]
498  */
499  Scalar ColinearRapidity() const {
500  // TODO - It would be good to check that E > P and use the Throw()
501  // mechanism or at least load a NAN if not.
502  const Scalar ee = E();
503  const Scalar pp = P();
504  return Scalar(0.5) * log((ee + pp) / (ee - pp));
505  }
506 
507  /**
508  Determine if momentum-energy can represent a physical massive particle
509  */
510  bool isTimelike( ) const {
511  Scalar ee = E(); Scalar pp = P(); return ee*ee > pp*pp;
512  }
513 
514  /**
515  Determine if momentum-energy can represent a massless particle
516  */
517  bool isLightlike( Scalar tolerance
518  = 100*std::numeric_limits<Scalar>::epsilon() ) const {
519  Scalar ee = E(); Scalar pp = P(); Scalar delta = ee-pp;
520  if ( ee==0 ) return pp==0;
521  return delta*delta < tolerance * ee*ee;
522  }
523 
524  /**
525  Determine if momentum-energy is spacelike, and represents a tachyon
526  */
527  bool isSpacelike( ) const {
528  Scalar ee = E(); Scalar pp = P(); return ee*ee < pp*pp;
529  }
530 
532 
533  /**
534  The beta vector for the boost that would bring this vector into
535  its center of mass frame (zero momentum)
536  */
537  BetaVector BoostToCM( ) const {
538  if (E() == 0) {
539  if (P() == 0) {
540  return BetaVector();
541  } else {
542  // TODO - should attempt to Throw with msg about
543  // boostVector computed for LorentzVector with t=0
544  return -Vect()/E();
545  }
546  }
547  if (M2() <= 0) {
548  // TODO - should attempt to Throw with msg about
549  // boostVector computed for a non-timelike LorentzVector
550  }
551  return -Vect()/E();
552  }
553 
554  /**
555  The beta vector for the boost that would bring this vector into
556  its center of mass frame (zero momentum)
557  */
558  template <class Other4Vector>
559  BetaVector BoostToCM(const Other4Vector& v ) const {
560  Scalar eSum = E() + v.E();
561  DisplacementVector3D< Cartesian3D<Scalar> > vecSum = Vect() + v.Vect();
562  if (eSum == 0) {
563  if (vecSum.Mag2() == 0) {
564  return BetaVector();
565  } else {
566  // TODO - should attempt to Throw with msg about
567  // boostToCM computed for two 4-vectors with combined t=0
568  return BetaVector(vecSum/eSum);
569  }
570  // TODO - should attempt to Throw with msg about
571  // boostToCM computed for two 4-vectors with combined e=0
572  }
573  return BetaVector (vecSum * (-1./eSum));
574  }
575 
576  //beta and gamma
577 
578  /**
579  Return beta scalar value
580  */
581  Scalar Beta() const {
582  if ( E() == 0 ) {
583  if ( P2() == 0)
584  // to avoid Nan
585  return 0;
586  else {
587  GenVector::Throw ("LorentzVector::Beta() - beta computed for LorentzVector with t = 0. Return an Infinite result");
588  return 1./E();
589  }
590  }
591  if ( M2() <= 0 ) {
592  GenVector::Throw ("LorentzVector::Beta() - beta computed for non-timelike LorentzVector . Result is physically meaningless" );
593  }
594  return P() / E();
595  }
596  /**
597  Return Gamma scalar value
598  */
599  Scalar Gamma() const {
600  const Scalar v2 = P2();
601  const Scalar t2 = pow(E(), 2);
602  if (E() == 0) {
603  if ( P2() == 0) {
604  return 1;
605  } else {
606  GenVector::Throw ("LorentzVector::Gamma() - gamma computed for LorentzVector with t = 0. Return a zero result");
607 
608  }
609  }
610  if ( t2 < v2 ) {
611  GenVector::Throw ("LorentzVector::Gamma() - gamma computed for a spacelike LorentzVector. Imaginary result");
612  return 0;
613  }
614  else if ( t2 == v2 ) {
615  GenVector::Throw ("LorentzVector::Gamma() - gamma computed for a lightlike LorentzVector. Infinite result");
616  }
617  return Scalar(1) / sqrt(Scalar(1) - v2 / t2);
618  } /* gamma */
619 
620 
621  // Method providing limited backward name compatibility with CLHEP ----
622 
623  Scalar x() const { return fCoordinates.Px(); }
624  Scalar y() const { return fCoordinates.Py(); }
625  Scalar z() const { return fCoordinates.Pz(); }
626  Scalar t() const { return fCoordinates.E(); }
627  Scalar px() const { return fCoordinates.Px(); }
628  Scalar py() const { return fCoordinates.Py(); }
629  Scalar pz() const { return fCoordinates.Pz(); }
630  Scalar e() const { return fCoordinates.E(); }
631  Scalar r() const { return fCoordinates.R(); }
632  Scalar theta() const { return fCoordinates.Theta(); }
633  Scalar phi() const { return fCoordinates.Phi(); }
634  Scalar rho() const { return fCoordinates.Rho(); }
635  Scalar eta() const { return fCoordinates.Eta(); }
636  Scalar pt() const { return fCoordinates.Pt(); }
637  Scalar perp2() const { return fCoordinates.Perp2(); }
638  Scalar mag2() const { return fCoordinates.M2(); }
639  Scalar mag() const { return fCoordinates.M(); }
640  Scalar mt() const { return fCoordinates.Mt(); }
641  Scalar mt2() const { return fCoordinates.Mt2(); }
642 
643 
644  // Methods requested by CMS ---
645  Scalar energy() const { return fCoordinates.E(); }
646  Scalar mass() const { return fCoordinates.M(); }
647  Scalar mass2() const { return fCoordinates.M2(); }
648 
649 
650  /**
651  Methods setting a Single-component
652  Work only if the component is one of which the vector is represented.
653  For example SetE will work for a PxPyPzE Vector but not for a PxPyPzM Vector.
654  */
655  LorentzVector<CoordSystem>& SetE ( Scalar a ) { fCoordinates.SetE (a); return *this; }
656  LorentzVector<CoordSystem>& SetEta( Scalar a ) { fCoordinates.SetEta(a); return *this; }
657  LorentzVector<CoordSystem>& SetM ( Scalar a ) { fCoordinates.SetM (a); return *this; }
658  LorentzVector<CoordSystem>& SetPhi( Scalar a ) { fCoordinates.SetPhi(a); return *this; }
659  LorentzVector<CoordSystem>& SetPt ( Scalar a ) { fCoordinates.SetPt (a); return *this; }
660  LorentzVector<CoordSystem>& SetPx ( Scalar a ) { fCoordinates.SetPx (a); return *this; }
661  LorentzVector<CoordSystem>& SetPy ( Scalar a ) { fCoordinates.SetPy (a); return *this; }
662  LorentzVector<CoordSystem>& SetPz ( Scalar a ) { fCoordinates.SetPz (a); return *this; }
663 
664  private:
665 
666  CoordSystem fCoordinates; // internal coordinate system
667 
668 
669  }; // LorentzVector<>
670 
671 
672 
673  // global nethods
674 
675  /**
676  Scale of a LorentzVector with a scalar quantity a
677  \param a scalar quantity of typpe a
678  \param v mathcore::LorentzVector based on any coordinate system
679  \return a new mathcoreLorentzVector q = v * a same type as v
680  */
681  template< class CoordSystem >
682  inline LorentzVector<CoordSystem> operator *
684  const LorentzVector<CoordSystem>& v) {
686  tmp *= a;
687  return tmp;
688  }
689 
690  // ------------- I/O to/from streams -------------
691 
692  template< class char_t, class traits_t, class Coords >
693  inline
694  std::basic_ostream<char_t,traits_t> &
695  operator << ( std::basic_ostream<char_t,traits_t> & os
696  , LorentzVector<Coords> const & v
697  )
698  {
699  if( !os ) return os;
700 
701  typename Coords::Scalar a, b, c, d;
702  v.GetCoordinates(a, b, c, d);
703 
704  if( detail::get_manip( os, detail::bitforbit ) ) {
705  detail::set_manip( os, detail::bitforbit, '\00' );
706  // TODO: call MF's bitwise-accurate functions on each of a, b, c, d
707  }
708  else {
709  os << detail::get_manip( os, detail::open ) << a
710  << detail::get_manip( os, detail::sep ) << b
711  << detail::get_manip( os, detail::sep ) << c
712  << detail::get_manip( os, detail::sep ) << d
714  }
715 
716  return os;
717 
718  } // op<< <>()
719 
720 
721  template< class char_t, class traits_t, class Coords >
722  inline
723  std::basic_istream<char_t,traits_t> &
724  operator >> ( std::basic_istream<char_t,traits_t> & is
726  )
727  {
728  if( !is ) return is;
729 
730  typename Coords::Scalar a, b, c, d;
731 
732  if( detail::get_manip( is, detail::bitforbit ) ) {
733  detail::set_manip( is, detail::bitforbit, '\00' );
734  // TODO: call MF's bitwise-accurate functions on each of a, b, c
735  }
736  else {
737  detail::require_delim( is, detail::open ); is >> a;
738  detail::require_delim( is, detail::sep ); is >> b;
739  detail::require_delim( is, detail::sep ); is >> c;
740  detail::require_delim( is, detail::sep ); is >> d;
742  }
743 
744  if( is )
745  v.SetCoordinates(a, b, c, d);
746  return is;
747 
748  } // op>> <>()
749 
750 
751 
752  } // end namespace Math
753 
754 } // end namespace ROOT
755 
756 
757 
758 #endif
759 
760 //#include "Math/GenVector/LorentzVectorOperations.h"
761 
762 
763 
Scalar Mt2() const
return the transverse mass squared
BetaVector BoostToCM() const
The beta vector for the boost that would bring this vector into its center of mass frame (zero moment...
Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system ...
Definition: LorentzVector.h:48
Scalar Et2() const
return the transverse energy squared
LorentzVector< CoordSystem > & SetPz(Scalar a)
Scalar Px() const
spatial X component
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
const CoordSystem & Coordinates() const
Retrieve a const reference to the coordinates object.
LorentzVector< CoordSystem > & SetPxPyPzE(Scalar xx, Scalar yy, Scalar zz, Scalar ee)
void GetCoordinates(Scalar dest[]) const
get internal data into an array of 4 Scalar numbers
LorentzVector operator-() const
Negative of a LorentzVector (q = - v )
Scalar Eta() const
pseudorapidity
LorentzVector(const LorentzVector< Coords > &v)
constructor from a LorentzVector expressed in different coordinates, or using a different Scalar type...
Definition: LorentzVector.h:82
void GetCoordinates(IT begin, IT end) const
get internal data into 4 Scalars at *begin to *end
LorentzVector & operator-=(const OtherLorentzVector &q)
Self subtraction of another Vector from this ( v-= q ) Enable the addition with any other LorentzVect...
Scalar Dot(const OtherLorentzVector &q) const
scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+) Enable the product using any ot...
std::basic_istream< char_t, traits_t > & operator>>(std::basic_istream< char_t, traits_t > &is, DisplacementVector2D< T, U > &v)
LorentzVector< CoordSystem > & SetCoordinates(const Scalar src[])
Set internal data based on an array of 4 Scalar numbers.
TArc * a
Definition: textangle.C:12
LorentzVector< CoordSystem > & SetCoordinates(Scalar a, Scalar b, Scalar c, Scalar d)
Set internal data based on 4 Scalar numbers.
LorentzVector< CoordSystem > & SetM(Scalar a)
LorentzVector< CoordSystem > & SetPy(Scalar a)
LorentzVector< CoordSystem > & SetXYZT(Scalar xx, Scalar yy, Scalar zz, Scalar tt)
set the values of the vector from the cartesian components (x,y,z,t) (if the vector is held in anothe...
Float_t delta
Scalar Theta() const
polar Angle
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
DisplacementVector3D< Cartesian3D< Scalar > > BetaVector
CoordSystem::Scalar Scalar
Definition: LorentzVector.h:54
LorentzVector(const Scalar &a, const Scalar &b, const Scalar &c, const Scalar &d)
generic constructors from four scalar values.
Definition: LorentzVector.h:71
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:42
TText * tt
Definition: textangle.C:16
LorentzVector & operator+=(const OtherLorentzVector &q)
Self addition with another Vector ( v+= q ) Enable the addition with any other LorentzVector.
double pow(double, double)
LorentzVector()
default constructor of an empty vector (Px = Py = Pz = E = 0 )
Definition: LorentzVector.h:60
LorentzVector< CoordSystem > & SetPhi(Scalar a)
Scalar E() const
return 4-th component (time, or energy for a 4-momentum vector)
LorentzVector< CoordSystem > & SetCoordinates(IT begin, IT end)
Set internal data based on 4 Scalars at *begin to *end.
char_t get_manip(std::basic_ios< char_t, traits_t > &ios, manip_t m)
Definition: GenVectorIO.h:54
bool operator!=(const LorentzVector &rhs) const
bool isTimelike() const
Determine if momentum-energy can represent a physical massive particle.
Class describing a generic displacement vector in 3 dimensions.
void Throw(const char *)
function throwing exception, by creating internally a GenVector_exception only when needed ...
LorentzVector< CoordSystem > & SetPt(Scalar a)
SVector< double, 2 > v
Definition: Dict.h:5
void GetCoordinates(IT begin) const
get internal data into 4 Scalars at *begin
LorentzVector & operator=(const LorentzVector< OtherCoords > &v)
Assignment operator from a lorentz vector of arbitrary type.
LorentzVector< CoordSystem > & SetE(Scalar a)
Methods setting a Single-component Work only if the component is one of which the vector is represent...
Scalar Et() const
return the transverse energy
BetaVector BoostToCM(const Other4Vector &v) const
The beta vector for the boost that would bring this vector into its center of mass frame (zero moment...
Scalar Py() const
spatial Y component
LorentzVector< CoordSystem > & SetEta(Scalar a)
REAL epsilon
Definition: triangle.c:617
bool operator==(const LorentzVector &rhs) const
Exact equality.
void GetCoordinates(Scalar &a, Scalar &b, Scalar &c, Scalar &d) const
get internal data into 4 Scalar numbers
Scalar Phi() const
azimuthal Angle
Scalar Gamma() const
Return Gamma scalar value.
LorentzVector< CoordSystem > operator/(const Scalar &a) const
Divide a LorentzVector by a scalar quantity.
Scalar M() const
return magnitude (mass) using the (-,-,-,+) metric.
LorentzVector & operator*=(Scalar a)
multiplication by a scalar quantity v *= a
bool isLightlike(Scalar tolerance=100 *std::numeric_limits< Scalar >::epsilon()) const
Determine if momentum-energy can represent a massless particle.
Scalar Beta() const
Return beta scalar value.
void set_manip(std::basic_ios< char_t, traits_t > &ios, manip_t m, char_t ch)
Definition: GenVectorIO.h:74
Scalar Rapidity() const
Rapidity relative to the Z axis: .5 log [(E+Pz)/(E-Pz)].
Namespace for new Math classes and functions.
Scalar Perp2() const
return the square of the transverse spatial component ( X**2 + Y**2 )
Scalar R() const
return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
Scalar P2() const
return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
std::basic_istream< char_t, traits_t > & require_delim(std::basic_istream< char_t, traits_t > &is, manip_t m)
Definition: GenVectorIO.h:113
#define dest(otri, vertexptr)
Definition: triangle.c:1040
LorentzVector operator*(const Scalar &a) const
product of a LorentzVector by a scalar quantity
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Definition: TRolke.cxx:630
Scalar M2() const
return magnitude (mass) squared M2 = T**2 - X**2 - Y**2 - Z**2 (we use -,-,-,+ metric) ...
Scalar ColinearRapidity() const
Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)].
Scalar Mag2() const
Magnitute squared ( r^2 in spherical coordinate)
Scalar Pz() const
spatial Z component
LorentzVector(const ForeignLorentzVector &v)
Construct from a foreign 4D vector type, for example, HepLorentzVector Precondition: v must implement...
Definition: LorentzVector.h:90
Scalar Mt() const
return the transverse mass
LorentzVector< CoordSystem > & SetPx(Scalar a)
bool isSpacelike() const
Determine if momentum-energy is spacelike, and represents a tachyon.
LorentzVector & operator/=(Scalar a)
division by a scalar quantity v /= a
float * q
Definition: THbookFile.cxx:87
Rotation3D::Scalar Scalar
Scalar Pt() const
return the transverse spatial component sqrt ( X**2 + Y**2 )
::ROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > > Vect() const
get the spatial components of the Vector in a DisplacementVector based on Cartesian Coordinates ...
LorentzVector operator+() const
double log(double)