25 #ifndef ROOT_TMVA_GeneticAlgorithm 26 #define ROOT_TMVA_GeneticAlgorithm 55 const std::vector<TMVA::Interval*>& ranges,
UInt_t seed = 0 );
96 const std::vector<TMVA::Interval*>&
fRanges;
virtual Double_t CalculateFitness()
starts the evaluation of the fitness of all different individuals of the population.
GeneticPopulation & GetGeneticPopulation()
GeneticAlgorithm(IFitterTarget &target, Int_t populationSize, const std::vector< TMVA::Interval *> &ranges, UInt_t seed=0)
Constructor.
virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps, Double_t factor)
this function provides the ability to change the stepSize of a mutation according to the success of t...
GeneticPopulation fPopulation
const std::vector< TMVA::Interval * > & fRanges
#define ClassDef(name, id)
void SetMakeCopies(Bool_t s)
Double_t GetSpread() const
IFitterTarget & fFitterTarget
Base definition for genetic algorithm.
virtual ~GeneticAlgorithm()
std::deque< Int_t > fSuccessList
virtual Bool_t HasConverged(Int_t steps=10, Double_t ratio=0.1)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
ostringstream derivative to redirect and format output
virtual void Evolution()
this function is called from "init" and controls the evolution of the individuals.
Abstract ClassifierFactory template that handles arbitrary types.
Population definition for genetic algorithm.
virtual Double_t NewFitness(Double_t oldValue, Double_t newValue)
if the "fitnessFunction" is called multiple times for one set of factors (because i...
Interface for a fitter 'target'.
void Init()
calls evolution, but if it is not the first time.
void SetSpread(Double_t s)