36 #ifdef _GLIBCXX_PARALLEL 73 fFitterTarget( target ),
80 fPopulationSize(populationSize),
82 fPopulation(ranges, populationSize, seed),
83 fBestFitness(DBL_MAX),
86 fPopulation.SetRandomSeed( seed );
104 if ( fFirstTime ) fFirstTime =
kFALSE;
138 fBestFitness = DBL_MAX;
139 #ifdef _GLIBCXX_PARALLEL 141 const int nt = omp_get_num_threads();
143 for (
int i =0; i < nt; ++i )
144 bests[i] = fBestFitness;
148 int thread_number = omp_get_thread_num();
150 for (
int index = 0; index < fPopulation.GetPopulationSize(); ++index )
154 fFitterTarget.EstimatorFunction(genes->
GetFactors()) );
157 if ( bests[thread_number] > fitness )
158 bests[thread_number] = fitness;
162 fBestFitness = *std::min_element(bests, bests+nt);
166 for (
int index = 0; index < fPopulation.GetPopulationSize(); ++index ) {
169 fFitterTarget.EstimatorFunction(genes->
GetFactors()) );
172 if ( fBestFitness > fitness )
173 fBestFitness = fitness;
194 fPopulation.MakeCopies( 5 );
195 fPopulation.MakeChildren();
197 fPopulation.Mutate( 10, 3,
kTRUE, fSpread, fMirror );
198 fPopulation.Mutate( 40, fPopulation.GetPopulationSize()*3/4 );
221 if ( fBestFitness < fLastResult || fSuccessList.size() <=0 ) {
222 fLastResult = fBestFitness;
223 fSuccessList.push_front( 1 );
226 fSuccessList.push_front( 0 );
230 std::deque<Int_t>::iterator vec = fSuccessList.begin();
231 for (; vec != fSuccessList.end() ; vec++) {
236 if ( n >= ofSteps ) {
237 fSuccessList.pop_back();
238 if ( sum > successSteps ) {
240 if (GeneticAlgorithm__DEBUG__)
Log() << kINFO <<
">" << std::flush;
242 else if ( sum == successSteps ) {
243 if (GeneticAlgorithm__DEBUG__)
Log() <<
"=" << std::flush;
247 if (GeneticAlgorithm__DEBUG__)
Log() <<
"<" << std::flush;
263 if (fConvCounter < 0) {
264 fConvValue = fBestFitness;
266 if (
TMath::Abs(fBestFitness - fConvValue) <= improvement || steps<0) {
271 fConvValue = fBestFitness;
273 if (GeneticAlgorithm__DEBUG__)
Log() <<
"." << std::flush;
274 if (fConvCounter < steps)
return kFALSE;
static long int sum(long int i)
virtual Double_t CalculateFitness()
starts the evaluation of the fitness of all different individuals of the population.
virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps, Double_t factor)
this function provides the ability to change the stepSize of a mutation according to the success of t...
Cut optimisation interface class for genetic algorithm.
void SetFitness(Double_t fitness)
The TMVA::Interval Class.
Base definition for genetic algorithm.
Double_t GetFitness() const
virtual ~GeneticAlgorithm()
virtual Bool_t HasConverged(Int_t steps=10, Double_t ratio=0.1)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
std::vector< Double_t > & GetFactors()
ostringstream derivative to redirect and format output
virtual void Evolution()
this function is called from "init" and controls the evolution of the individuals.
Abstract ClassifierFactory template that handles arbitrary types.
virtual Double_t NewFitness(Double_t oldValue, Double_t newValue)
if the "fitnessFunction" is called multiple times for one set of factors (because i...
Interface for a fitter 'target'.
void Init()
calls evolution, but if it is not the first time.