Logo ROOT   6.10/09
Reference Guide
Rolke.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_math
3 /// \notebook -nodraw
4 /// Example of the usage of the TRolke class
5 /// The TRolke class computes the profile likelihood
6 /// confidence limits for 7 different model assumptions
7 /// on systematic/statistical uncertainties
8 ///
9 /// Please read TRolke.cxx and TRolke.h for more docs.
10 ///
11 /// \macro_output
12 /// \macro_code
13 ///
14 /// \authors Jan Conrad. Johan Lundberg
15 
16 #include "TROOT.h"
17 #include "TSystem.h"
18 #include "TRolke.h"
19 #include "Riostream.h"
20 
21 void Rolke()
22 {
23  // variables used throughout the example
24  Double_t bm;
25  Double_t tau;
26  Int_t mid;
27  Int_t m;
28  Int_t z;
29  Int_t y;
30  Int_t x;
31  Double_t e;
32  Double_t em;
33  Double_t sde;
34  Double_t sdb;
35  Double_t b;
36 
37  Double_t alpha; //Confidence Level
38 
39  // make TRolke objects
40  TRolke tr; //
41 
42  Double_t ul ; // upper limit
43  Double_t ll ; // lower limit
44 
45 //-----------------------------------------------
46 // Model 1 assumes:
47 //
48 // Poisson uncertainty in the background estimate
49 // Binomial uncertainty in the efficiency estimate
50 //
51  cout << endl<<" ======================================================== " <<endl;
52  mid =1;
53  x = 5; // events in the signal region
54  y = 10; // events observed in the background region
55  tau = 2.5; // ratio between size of signal/background region
56  m = 100; // MC events have been produced (signal)
57  z = 50; // MC events have been observed (signal)
58 
59  alpha=0.9; //Confidence Level
60 
61  tr.SetCL(alpha);
62 
63  tr.SetPoissonBkgBinomEff(x,y,z,tau,m);
64  tr.GetLimits(ll,ul);
65 
66  cout << "For model 1: Poisson / Binomial" << endl;
67  cout << "the Profile Likelihood interval is :" << endl;
68  cout << "[" << ll << "," << ul << "]" << endl;
69 
70 //-----------------------------------------------
71 // Model 2 assumes:
72 //
73 // Poisson uncertainty in the background estimate
74 // Gaussian uncertainty in the efficiency estimate
75 //
76  cout << endl<<" ======================================================== " <<endl;
77  mid =2;
78  y = 3 ; // events observed in the background region
79  x = 10 ; // events in the signal region
80  tau = 2.5; // ratio between size of signal/background region
81  em = 0.9; // measured efficiency
82  sde = 0.05; // standard deviation of efficiency
83  alpha =0.95; // Confidence L evel
84 
85  tr.SetCL(alpha);
86 
87  tr.SetPoissonBkgGaussEff(x,y,em,tau,sde);
88  tr.GetLimits(ll,ul);
89 
90  cout << "For model 2 : Poisson / Gaussian" << endl;
91  cout << "the Profile Likelihood interval is :" << endl;
92  cout << "[" << ll << "," << ul << "]" << endl;
93 
94 //-----------------------------------------------
95 // Model 3 assumes:
96 //
97 // Gaussian uncertainty in the background estimate
98 // Gaussian uncertainty in the efficiency estimate
99 //
100  cout << endl<<" ======================================================== " <<endl;
101  mid =3;
102  bm = 5; // expected background
103  x = 10; // events in the signal region
104  sdb = 0.5; // standard deviation in background estimate
105  em = 0.9; // measured efficiency
106  sde = 0.05; // standard deviation of efficiency
107  alpha =0.99; // Confidence Level
108 
109  tr.SetCL(alpha);
110 
111  tr.SetGaussBkgGaussEff(x,bm,em,sde,sdb);
112  tr.GetLimits(ll,ul);
113  cout << "For model 3 : Gaussian / Gaussian" << endl;
114  cout << "the Profile Likelihood interval is :" << endl;
115  cout << "[" << ll << "," << ul << "]" << endl;
116 
117  cout << "***************************************" << endl;
118  cout << "* some more example's for gauss/gauss *" << endl;
119  cout << "* *" << endl;
120  Double_t slow,shigh;
121  tr.GetSensitivity(slow,shigh);
122  cout << "sensitivity:" << endl;
123  cout << "[" << slow << "," << shigh << "]" << endl;
124 
125  int outx;
126  tr.GetLimitsQuantile(slow,shigh,outx,0.5);
127  cout << "median limit:" << endl;
128  cout << "[" << slow << "," << shigh << "] @ x =" << outx <<endl;
129 
130  tr.GetLimitsML(slow,shigh,outx);
131  cout << "ML limit:" << endl;
132  cout << "[" << slow << "," << shigh << "] @ x =" << outx <<endl;
133 
134  tr.GetSensitivity(slow,shigh);
135  cout << "sensitivity:" << endl;
136  cout << "[" << slow << "," << shigh << "]" << endl;
137 
138  tr.GetLimits(ll,ul);
139  cout << "the Profile Likelihood interval is :" << endl;
140  cout << "[" << ll << "," << ul << "]" << endl;
141 
142  Int_t ncrt;
143 
144  tr.GetCriticalNumber(ncrt);
145  cout << "critical number: " << ncrt << endl;
146 
147  tr.SetCLSigmas(5);
148  tr.GetCriticalNumber(ncrt);
149  cout << "critical number for 5 sigma: " << ncrt << endl;
150 
151  cout << "***************************************" << endl;
152 
153 //-----------------------------------------------
154 // Model 4 assumes:
155 //
156 // Poisson uncertainty in the background estimate
157 // known efficiency
158 //
159  cout << endl<<" ======================================================== " <<endl;
160  mid =4;
161  y = 7; // events observed in the background region
162  x = 1; // events in the signal region
163  tau = 5; // ratio between size of signal/background region
164  e = 0.25; // efficiency
165 
166  alpha =0.68; // Confidence L evel
167 
168  tr.SetCL(alpha);
169 
170  tr.SetPoissonBkgKnownEff(x,y,tau,e);
171  tr.GetLimits(ll,ul);
172 
173  cout << "For model 4 : Poissonian / Known" << endl;
174  cout << "the Profile Likelihood interval is :" << endl;
175  cout << "[" << ll << "," << ul << "]" << endl;
176 
177 //-----------------------------------------------
178 // Model 5 assumes:
179 //
180 // Gaussian uncertainty in the background estimate
181 // Known efficiency
182 //
183  cout << endl<<" ======================================================== " <<endl;
184  mid =5;
185  bm = 0; // measured background expectation
186  x = 1 ; // events in the signal region
187  e = 0.65; // known eff
188  sdb = 1.0; // standard deviation of background estimate
189  alpha =0.799999; // Confidence Level
190 
191  tr.SetCL(alpha);
192 
193  tr.SetGaussBkgKnownEff(x,bm,sdb,e);
194  tr.GetLimits(ll,ul);
195 
196  cout << "For model 5 : Gaussian / Known" << endl;
197  cout << "the Profile Likelihood interval is :" << endl;
198  cout << "[" << ll << "," << ul << "]" << endl;
199 
200 //-----------------------------------------------
201 // Model 6 assumes:
202 //
203 // Known background
204 // Binomial uncertainty in the efficiency estimate
205 //
206  cout << endl<<" ======================================================== " <<endl;
207  mid =6;
208  b = 10; // known background
209  x = 25; // events in the signal region
210  z = 500; // Number of observed signal MC events
211  m = 750; // Number of produced MC signal events
212  alpha =0.9; // Confidence L evel
213 
214  tr.SetCL(alpha);
215 
216  tr.SetKnownBkgBinomEff(x, z,m,b);
217  tr.GetLimits(ll,ul);
218 
219  cout << "For model 6 : Known / Binomial" << endl;
220  cout << "the Profile Likelihood interval is :" << endl;
221  cout << "[" << ll << "," << ul << "]" << endl;
222 
223 //-----------------------------------------------
224 // Model 7 assumes:
225 //
226 // Known Background
227 // Gaussian uncertainty in the efficiency estimate
228 //
229  cout << endl<<" ======================================================== " <<endl;
230  mid =7;
231  x = 15; // events in the signal region
232  em = 0.77; // measured efficiency
233  sde = 0.15; // standard deviation of efficiency estimate
234  b = 10; // known background
235  alpha =0.95; // Confidence L evel
236 
237  y = 1;
238 
239  tr.SetCL(alpha);
240 
241  tr.SetKnownBkgGaussEff(x,em,sde,b);
242  tr.GetLimits(ll,ul);
243 
244  cout << "For model 7 : Known / Gaussian " << endl;
245  cout << "the Profile Likelihood interval is :" << endl;
246  cout << "[" << ll << "," << ul << "]" << endl;
247 
248 //-----------------------------------------------
249 // Example of bounded and unbounded likelihood
250 // Example for Model 1
251 
252  bm = 0.0;
253  tau = 5;
254  mid = 1;
255  m = 100;
256  z = 90;
257  y = 15;
258  x = 0;
259  alpha = 0.90;
260 
261  tr.SetCL(alpha);
262  tr.SetPoissonBkgBinomEff(x,y,z,tau,m);
263  tr.SetBounding(true); //bounded
264  tr.GetLimits(ll,ul);
265 
266  cout << "Example of the effect of bounded vs unbounded, For model 1" << endl;
267  cout << "the BOUNDED Profile Likelihood interval is :" << endl;
268  cout << "[" << ll << "," << ul << "]" << endl;
269 
270 
271  tr.SetBounding(false); //unbounded
272  tr.GetLimits(ll,ul);
273 
274  cout << "the UNBOUNDED Profile Likelihood interval is :" << endl;
275  cout << "[" << ll << "," << ul << "]" << endl;
276 }
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t mid
Definition: TRolke.cxx:630
bool GetLimitsQuantile(Double_t &low, Double_t &high, Int_t &out_x, Double_t integral=0.5)
get the upper and lower limits for the outcome corresponding to a given quantile. ...
Definition: TRolke.cxx:481
bool GetSensitivity(Double_t &low, Double_t &high, Double_t pPrecision=0.00001)
get the upper and lower average limits based on the specified model.
Definition: TRolke.cxx:446
int Int_t
Definition: RtypesCore.h:41
void SetPoissonBkgGaussEff(Int_t x, Int_t y, Double_t em, Double_t tau, Double_t sde)
Model 2: Background - Poisson, Efficiency - Gaussian.
Definition: TRolke.cxx:226
void SetPoissonBkgBinomEff(Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Model 1: Background - Poisson, Efficiency - Binomial.
Definition: TRolke.cxx:201
Double_t x[n]
Definition: legend1.C:17
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t tau
Definition: TRolke.cxx:630
you should not use this method at all Int_t Int_t Double_t Double_t em
Definition: TRolke.cxx:630
void SetGaussBkgGaussEff(Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb)
Model 3: Background - Gaussian, Efficiency - Gaussian (x,bm,em,sde,sdb)
Definition: TRolke.cxx:252
void SetCL(Double_t CL)
Definition: TRolke.h:124
you should not use this method at all Int_t Int_t Double_t bm
Definition: TRolke.cxx:630
bool GetLimitsML(Double_t &low, Double_t &high, Int_t &out_x)
get the upper and lower limits for the most likely outcome.
Definition: TRolke.cxx:511
you should not use this method at all * sde
Definition: TRolke.cxx:630
void SetGaussBkgKnownEff(Int_t x, Double_t bm, Double_t sdb, Double_t e)
Model 5: Background - Gaussian, Efficiency - known (x,bm,sdb,e.
Definition: TRolke.cxx:302
void SetCLSigmas(Double_t CLsigmas)
Definition: TRolke.h:129
void SetKnownBkgBinomEff(Int_t x, Int_t z, Int_t m, Double_t b)
Model 6: Background - known, Efficiency - Binomial (x,z,m,b)
Definition: TRolke.cxx:327
TMarker * m
Definition: textangle.C:8
void SetPoissonBkgKnownEff(Int_t x, Int_t y, Double_t tau, Double_t e)
Model 4: Background - Poisson, Efficiency - known (x,y,tau,e)
Definition: TRolke.cxx:277
void SetKnownBkgGaussEff(Int_t x, Double_t em, Double_t sde, Double_t b)
Model 7: Background - known, Efficiency - Gaussian (x,em,sde,b)
Definition: TRolke.cxx:352
double Double_t
Definition: RtypesCore.h:55
Double_t y[n]
Definition: legend1.C:17
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
Definition: TRolke.cxx:630
void SetBounding(const bool bnd)
Definition: TRolke.h:184
you should not use this method at all Int_t Int_t z
Definition: TRolke.cxx:630
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Definition: TRolke.cxx:630
This class computes confidence intervals for the rate of a Poisson process in the presence of uncerta...
Definition: TRolke.h:33
bool GetCriticalNumber(Int_t &ncrit, Int_t maxtry=-1)
get the value of x corresponding to rejection of the null hypothesis.
Definition: TRolke.cxx:546
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t sdb
Definition: TRolke.cxx:630
bool GetLimits(Double_t &low, Double_t &high)
Calculate and get the upper and lower limits for the pre-specified model.
Definition: TRolke.cxx:373