147 if (ddp<0) ddp+= 360;
150 if (ddp<0) ddp+= 360;
151 if (ddp>360) ddp-=360;
154 if (ddp<0) ddp+= 360;
155 if (ddp>360) ddp-=360;
158 if (ddp<0) ddp+= 360;
159 if (ddp>360) ddp-=360;
195 for (
Int_t i=0; i<3; i++) {
196 norm[i] = point[i] - r0[i];
197 normsq += norm[i]*norm[i];
204 if (dir[0]*norm[0]+dir[1]*norm[1]+dir[2]*norm[2] < 0) {
219 if (phi < 0) phi+=360.0;
221 if (ddp<0) ddp+=360.;
238 Int_t numPoints = n*(n-1);
239 if (
fRmin>0) numPoints *= 2;
240 else if (
fDphi<360) numPoints += 2;
250 for (
Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
261 for (
Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
266 Double_t dd = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*
fR/rxy)/d;
276 for (
Int_t i=0; i<3; i++) p[i] = pt[i]+t*dir[i];
278 if (rxy<1
E-6)
return 0;
281 Double_t ddaxis = (p[0]*dir[0]+p[1]*dir[1]+p[2]*dir[2] - (p[0]*dir[0]+p[1]*dir[1])*
fR/rxy)/daxis;
282 Double_t dddaxis = 1 - ddaxis*ddaxis - (1-dir[2]*dir[2])*
fR/rxy +
283 fR*(p[0]*dir[0]+p[1]*dir[1])*(p[0]*dir[0]+p[1]*dir[1])/(rxy*rxy*rxy);
293 if (iact<3 && safe) {
320 dphi =
TGeoTubeSeg::DistFromInsideS(point,dir,
fR-
fRmax,
fR+
fRmax,
fRmax, c1,s1,c2,s2,cm,sm,cdfi);
332 if (iact<3 && safe) {
356 if (ddp<0) ddp+=360;;
359 phi2=(fPhi1+
fDphi)*TMath::DegToRad();
372 rxy2 = point[0]*point[0]+point[1]*point[1];
374 if (!hasphi || inphi) inbring=
kTRUE;
383 memcpy(pt,point,3*
sizeof(
Double_t));
385 if (hasphi) dring =
TGeoTubeSeg::DistFromOutsideS(point,dir,
TMath::Max(0.,
fR-
fRmax-eps),
fR+
fRmax+eps,
fRmax+eps, c1,s1,
c2,s2,
cm,sm,cdfi);
391 daxis =
Daxis(point,dir,snext);
394 for (i=0; i<3; i++) pt[i] = point[i]+snext*dir[i];
398 if (daxis<0) daxis =
Daxis(pt,dir,0);
404 for (i=0; i<3; i++) pt[i] += 0.1*eps*dir[i];
410 if (hasphi) dring =
TGeoTubeSeg::DistFromInsideS(pt,dir,
fR-
fRmin,
fR+
fRmin,
fRmin, c1,s1,
c2,s2,
cm,sm,cdfi);
412 if (dd<dring)
return (snext+dd);
415 for (i=0; i<3; i++) pt[i] = point[i] + snext*dir[i];
424 for (i=0; i<3; i++) pt[i] += 0.1*eps*dir[i];
428 if (hasphi) dring =
TGeoTubeSeg::DistFromInsideS(pt,dir,
TMath::Max(0.,
fR-
fRmax-eps),
fR+
fRmax+eps,
fRmax+eps, c1,s1,
c2,s2,
cm,sm,cdfi);
436 for (i=0; i<3; i++) pt[i] = point[i] + snext*dir[i];
512 Error(
"GetMakeRuntimeShape",
"parametrized toruses not supported");
521 printf(
"*** Shape %s: TGeoTorus ***\n",
GetName());
522 printf(
" R = %11.5f\n",
fR);
523 printf(
" Rmin = %11.5f\n",
fRmin);
524 printf(
" Rmax = %11.5f\n",
fRmax);
525 printf(
" Phi1 = %11.5f\n",
fPhi1);
526 printf(
" Dphi = %11.5f\n",
fDphi);
527 printf(
" Bounding box:\n");
538 Int_t nbPnts = n*(n-1);
541 if (hasrmin) nbPnts *= 2;
542 else if (hasphi) nbPnts += 2;
544 Int_t nbSegs = (2*n-1)*(n-1);
545 Int_t nbPols = (n-1)*(n-1);
547 nbSegs += (2*n-1)*(n-1);
548 nbPols += (n-1)*(n-1);
556 nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols);
573 Int_t nbPnts = n*(n-1);
574 Int_t indx, indp, startcap=0;
577 if (hasrmin) nbPnts *= 2;
578 else if (hasphi) nbPnts += 2;
587 for (i = 0; i <
n; i++) {
588 for (j = 0; j < n-1; j++) {
589 buff.
fSegs[indx+(i*(n-1)+j)*3] = c;
590 buff.
fSegs[indx+(i*(n-1)+j)*3+1] = i*(n-1)+j;
591 buff.
fSegs[indx+(i*(n-1)+j)*3+2] = i*(n-1)+((j+1)%(n-1));
597 for (i = 0; i < n-1; i++) {
598 for (j = 0; j < n-1; j++) {
599 buff.
fSegs[indx+(i*(n-1)+j)*3] = c;
600 buff.
fSegs[indx+(i*(n-1)+j)*3+1] = i*(n-1)+j;
601 buff.
fSegs[indx+(i*(n-1)+j)*3+2] = (i+1)*(n-1)+j;
604 indx += 3*(n-1)*(n-1);
605 startcap = (2*n-1)*(n-1);
610 for (i = 0; i <
n; i++) {
611 for (j = 0; j < n-1; j++) {
612 buff.
fSegs[indx+(i*(n-1)+j)*3] = c;
613 buff.
fSegs[indx+(i*(n-1)+j)*3+1] = indp + i*(n-1)+j;
614 buff.
fSegs[indx+(i*(n-1)+j)*3+2] = indp + i*(n-1)+((j+1)%(n-1));
620 for (i = 0; i < n-1; i++) {
621 for (j = 0; j < n-1; j++) {
622 buff.
fSegs[indx+(i*(n-1)+j)*3] = c;
623 buff.
fSegs[indx+(i*(n-1)+j)*3+1] = indp + i*(n-1)+j;
624 buff.
fSegs[indx+(i*(n-1)+j)*3+2] = indp + (i+1)*(n-1)+j;
627 indx += 3*(n-1)*(n-1);
628 startcap = (4*n-2)*(n-1);
635 for (j = 0; j < n-1; j++) {
636 buff.
fSegs[indx+j*3] = c+1;
637 buff.
fSegs[indx+j*3+1] = (n-1)*i+j;
638 buff.
fSegs[indx+j*3+2] = indp+(n-1)*i+j;
642 for (j = 0; j < n-1; j++) {
643 buff.
fSegs[indx+j*3] = c+1;
644 buff.
fSegs[indx+j*3+1] = (n-1)*i+j;
645 buff.
fSegs[indx+j*3+2] = indp+(n-1)*i+j;
650 for (j = 0; j < n-1; j++) {
651 buff.
fSegs[indx+j*3] = c+1;
652 buff.
fSegs[indx+j*3+1] = (n-1)*i+j;
653 buff.
fSegs[indx+j*3+2] = n*(n-1);
657 for (j = 0; j < n-1; j++) {
658 buff.
fSegs[indx+j*3] = c+1;
659 buff.
fSegs[indx+j*3+1] = (n-1)*i+j;
660 buff.
fSegs[indx+j*3+2] = n*(n-1)+1;
671 for (i=0; i<n-1; i++) {
672 for (j=0; j<n-1; j++) {
673 buff.
fPols[indx++] = c;
674 buff.
fPols[indx++] = 4;
675 buff.
fPols[indx++] = n*(n-1)+(n-1)*i+((j+1)%(n-1));
676 buff.
fPols[indx++] = (n-1)*(i+1)+j;
677 buff.
fPols[indx++] = n*(n-1)+(n-1)*i+j;
678 buff.
fPols[indx++] = (n-1)*i+j;
682 indp = (2*n-1)*(n-1);
685 for (i=0; i<n-1; i++) {
686 for (j=0; j<n-1; j++) {
687 buff.
fPols[indx++] = c;
688 buff.
fPols[indx++] = 4;
689 buff.
fPols[indx++] = indp+n*(n-1)+(n-1)*i+j;
690 buff.
fPols[indx++] = indp+(n-1)*(i+1)+j;
691 buff.
fPols[indx++] = indp+n*(n-1)+(n-1)*i+((j+1)%(n-1));
692 buff.
fPols[indx++] = indp+(n-1)*i+j;
699 Int_t np = (hasrmin)?4:3;
700 for (j=0; j<n-1; j++) {
701 buff.
fPols[indx++] = c+1;
702 buff.
fPols[indx++] = np;
703 buff.
fPols[indx++] = j;
704 buff.
fPols[indx++] = startcap+j;
706 buff.
fPols[indx++] = indp+j;
707 buff.
fPols[indx++] = startcap+((j+1)%(n-1));
711 for (j=0; j<n-1; j++) {
712 buff.
fPols[indx++] = c+1;
713 buff.
fPols[indx++] = np;
714 buff.
fPols[indx++] = (n-1)*i+j;
715 buff.
fPols[indx++] = startcap+(n-1)+((j+1)%(n-1));
717 buff.
fPols[indx++] = indp+(n-1)*i+j;
718 buff.
fPols[indx++] = startcap+(n-1)+j;
737 for (i=0; i<2; i++) saf[i]=-saf[i];
747 for (i=0; i<2; i++) saf[i]=-saf[i];
759 out <<
" r = " <<
fR <<
";" << std::endl;
760 out <<
" rmin = " <<
fRmin <<
";" << std::endl;
761 out <<
" rmax = " <<
fRmax <<
";" << std::endl;
762 out <<
" phi1 = " <<
fPhi1 <<
";" << std::endl;
763 out <<
" dphi = " <<
fDphi <<
";" << std::endl;
764 out <<
" TGeoShape *" <<
GetPointerName() <<
" = new TGeoTorus(\"" <<
GetName() <<
"\",r,rmin,rmax,phi1,dphi);" << std::endl;
805 for (i=0; i<
n; i++) {
809 for (j=0; j<n-1; j++) {
813 points[indx++] = (
fR+
fRmax*ci)*co;
814 points[indx++] = (
fR+
fRmax*ci)*so;
815 points[indx++] =
fRmax*si;
821 for (i=0; i<
n; i++) {
825 for (j=0; j<n-1; j++) {
829 points[indx++] = (
fR+
fRmin*ci)*co;
830 points[indx++] = (
fR+
fRmin*ci)*so;
831 points[indx++] =
fRmin*si;
863 for (i=0; i<
n; i++) {
867 for (j=0; j<n-1; j++) {
871 points[indx++] = (
fR+
fRmax*ci)*co;
872 points[indx++] = (
fR+
fRmax*ci)*so;
873 points[indx++] =
fRmax*si;
880 for (i=0; i<
n; i++) {
884 for (j=0; j<n-1; j++) {
888 points[indx++] = (
fR+
fRmin*ci)*co;
889 points[indx++] = (
fR+
fRmin*ci)*so;
890 points[indx++] =
fRmin*si;
914 Int_t numPoints = n*(n-1);
916 else if (
fDphi<360.) numPoints += 2;
939 Double_t q = c-a*b*ott+2.*a*a*a*ott*ott*ott;
945 t = (-3*q*sq3+delta)/(6*sq3);
946 u = (3*q*sq3+delta)/(6*sq3);
957 t = x[0]*x[0]+a*x[0]+
b;
963 x[1] = 0.5*(-u-delta);
964 x[2] = 0.5*(-u+delta);
979 Double_t g = d-3.*a*a*a*a/256. + a*a*b/16. - a*c/4.;
988 if (delta<0)
return 0;
993 x[ireal++] = -h-0.25*
a;
994 x[ireal++] = h-0.25*
a;
999 x[ireal++] = -h-0.25*
a;
1000 x[ireal++] = h-0.25*
a;
1004 for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
1005 memcpy(x,xx,ireal*
sizeof(
Double_t));
1011 x[ireal++] = -0.25*
a;
1013 for (i=0; i<ind[0]; i++) x[ireal++] = xx[i]-0.25*a;
1016 for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
1017 memcpy(x,xx,ireal*
sizeof(
Double_t));
1023 ireal =
SolveCubic(2.*e, e*e-4.*g, -f*f, xx);
1025 if (xx[0]<=0)
return 0;
1029 for (i=0; i<3; i++) {
1041 x[ireal++] = 0.5*(-h-delta)-0.25*a;
1042 x[ireal++] = 0.5*(-h+delta)-0.25*a;
1047 x[ireal++] = 0.5*(h-delta)-0.25*a;
1048 x[ireal++] = 0.5*(h+delta)-0.25*a;
1052 for (i=0; i<ireal; i++) xx[i] = x[ind[i]];
1053 memcpy(x,xx,ireal*
sizeof(
Double_t));
1068 Double_t r0sq = pt[0]*pt[0]+pt[1]*pt[1]+pt[2]*pt[2];
1069 Double_t rdotn = pt[0]*dir[0]+pt[1]*dir[1]+pt[2]*dir[2];
1072 Double_t b = 2.*(r0sq+2.*rdotn*rdotn-rsumsq+2.*
fR*
fR*dir[2]*dir[2]);
1073 Double_t c = 4.*(r0sq*rdotn-rsumsq*rdotn+2.*
fR*
fR*pt[2]*dir[2]);
1081 Double_t b0 = (pt[0]*dir[0]+pt[1]*dir[1])/(dir[0]*dir[0]+dir[1]*dir[1]);
1082 Double_t c0 = (pt[0]*pt[0] + (pt[1]-r0)*(pt[1]+r0))/(dir[0]*dir[0]+dir[1]*dir[1]);
1086 if (y[nsol]>-tol) nsol++;
1088 if (y[nsol]>-tol) nsol++;
1091 c0 = (pt[0]*pt[0] + (pt[1]-r0)*(pt[1]+r0))/(dir[0]*dir[0]+dir[1]*dir[1]);
1095 if (y[nsol]>-tol) nsol++;
1097 if (y[nsol]>-tol) nsol++;
1103 for (
Int_t j=0; j<nsol; j++) x[j] = y[ind[j]];
1113 for (
Int_t i=0; i<nsol; i++) {
1114 if (x[i]<-10)
continue;
1115 phi =
TMath::ATan2(pt[1]+x[i]*dir[1],pt[0]+x[i]*dir[0]);
1119 for (
Int_t ipt=0; ipt<3; ipt++) norm[ipt] = pt[ipt]+x[i]*dir[ipt] - r0[ipt];
1120 ndotd = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
1122 if (ndotd<0)
continue;
1124 if (ndotd>0)
continue;
1128 Double_t delta = s*s*s*s + a*s*s*s + b*s*s + c*s + d;
1129 Double_t eps0 = -delta/(4.*s*s*s + 3.*a*s*s + 2.*b*s + c);
1134 delta = s*s*s*s + a*s*s*s + b*s*s + c*s + d;
1135 eps = -delta/(4.*s*s*s + 3.*a*s*s + 2.*b*s + c);
1154 if (hasrmin) nvert *= 2;
1155 else if (hasphi) nvert += 2;
1156 nsegs = (2*n-1)*(n-1);
1157 npols = (n-1)*(n-1);
1159 nsegs += (2*n-1)*(n-1);
1160 npols += (n-1)*(n-1);
1179 Int_t nbPnts = n*(n-1);
1182 if (hasrmin) nbPnts *= 2;
1183 else if (hasphi) nbPnts += 2;
1185 Int_t nbSegs = (2*n-1)*(n-1);
1186 Int_t nbPols = (n-1)*(n-1);
1188 nbSegs += (2*n-1)*(n-1);
1189 nbPols += (n-1)*(n-1);
1196 if (buffer.
SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols)) {
1222 for (
Int_t i=0; i<vecsize; i++) inside[i] =
Contains(&points[3*i]);
1232 for (
Int_t i=0; i<vecsize; i++)
ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
1240 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
1248 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
1258 for (
Int_t i=0; i<vecsize; i++) safe[i] =
Safety(&points[3*i], inside[i]);
#define snext(osub1, osub2)
Long64_t LocMax(Long64_t n, const T *a)
Geometrical transformation package.
virtual const char * GetAxisName(Int_t iaxis) const
Returns name of axis IAXIS.
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the torus.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
Create a shape fitting the mother.
static constexpr double cm
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Short_t Min(Short_t a, Short_t b)
static Double_t SafetyPhi(const Double_t *point, Bool_t in, Double_t phi1, Double_t phi2)
Static method to compute safety w.r.t a phi corner defined by cosines/sines of the angles phi1...
virtual void InspectShape() const
Prints shape parameters.
static constexpr double rad
static Bool_t IsSameWithinTolerance(Double_t a, Double_t b)
Check if two numbers differ with less than a tolerance.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
static Double_t Tolerance()
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual void SetPoints(Double_t *points) const
Create torus mesh points.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Double_t DDDaxis(const Double_t *pt, const Double_t *dir, Double_t t) const
Second derivative of distance to torus axis w.r.t t.
Double_t DDaxis(const Double_t *pt, const Double_t *dir, Double_t t) const
Computes derivative w.r.t. t of the distance to axis of the torus from point pt + t*dir;...
constexpr Double_t DegToRad()
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
void SetTorusDimensions(Double_t r, Double_t rmin, Double_t rmax, Double_t phi1, Double_t dphi)
Set torus dimensions.
Double_t ATan2(Double_t, Double_t)
Double_t ToBoundary(const Double_t *pt, const Double_t *dir, Double_t r, Bool_t in) const
Returns distance to the surface or the torus (fR,r) from a point, along a direction.
void SetSectionsValid(UInt_t mask)
const char * GetPointerName() const
Provide a pointer name containing uid.
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
Double_t Daxis(const Double_t *pt, const Double_t *dir, Double_t t) const
Computes distance to axis of the torus from point pt + t*dir;.
virtual const char * GetName() const
Get the shape name.
static Double_t DistFromOutsideS(const Double_t *point, const Double_t *dir, Double_t rmin, Double_t rmax, Double_t dz, Double_t c1, Double_t s1, Double_t c2, Double_t s2, Double_t cm, Double_t sm, Double_t cdfi)
Static method to compute distance to arbitrary tube segment from outside point Boundary safe algorith...
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
Int_t GetNsegments() const
Get number of segments approximating circles.
Int_t ShapeDistancetoPrimitive(Int_t numpoints, Int_t px, Int_t py) const
Returns distance to shape primitive mesh.
Bool_t SectionsValid(UInt_t mask) const
virtual void InspectShape() const
print shape parameters
Base abstract class for all shapes.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute closest distance from point px,py to each vertex.
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
static Double_t DistFromInsideS(const Double_t *point, const Double_t *dir, Double_t rmin, Double_t rmax, Double_t dz)
Compute distance from inside point to surface of the tube (static) Boundary safe algorithm.
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
void TransformPoints(Double_t *points, UInt_t NbPoints) const
Tranform a set of points (LocalToMaster)
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Generic 3D primitive description class.
Int_t SolveCubic(Double_t a, Double_t b, Double_t c, Double_t *x) const
Find real solutions of the cubic equation : x^3 + a*x^2 + b*x + c = 0 Input: a,b,c Output: x[3] real ...
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this torus shape belonging to volume "voldiv" into ndiv volumes called divname, from start position with the given step.
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
virtual void SetSegsAndPols(TBuffer3D &buff) const
Fill TBuffer3D structure for segments and polygons.
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
static Double_t DistFromInsideS(const Double_t *point, const Double_t *dir, Double_t rmin, Double_t rmax, Double_t dz, Double_t c1, Double_t s1, Double_t c2, Double_t s2, Double_t cm, Double_t sm, Double_t cdfi)
Compute distance from inside point to surface of the tube segment (static) Boundary safe algorithm...
R__EXTERN TGeoManager * gGeoManager
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the box.
Int_t SolveQuartic(Double_t a, Double_t b, Double_t c, Double_t d, Double_t *x) const
Find real solutions of the quartic equation : x^4 + a*x^3 + b*x^2 + c*x + d = 0 Input: a...
Bool_t TestShapeBit(UInt_t f) const
virtual Bool_t Contains(const Double_t *point) const
Test if point is inside the torus.
static constexpr double s
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
virtual void SetDimensions(Double_t *param)
Set torus dimensions starting from a list.
virtual Int_t GetNmeshVertices() const
Return number of vertices of the mesh representation.
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
virtual void FillBuffer3D(TBuffer3D &buffer, Int_t reqSections, Bool_t localFrame) const
Fills the supplied buffer, with sections in desired frame See TBuffer3D.h for explanation of sections...
constexpr Double_t RadToDeg()
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual void ComputeBBox()
Compute bounding box of the torus.
Short_t Max(Short_t a, Short_t b)
static Double_t DistFromOutsideS(const Double_t *point, const Double_t *dir, Double_t rmin, Double_t rmax, Double_t dz)
Static method to compute distance from outside point to a tube with given parameters Boundary safe al...
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
TGeoTorus()
Default constructor.
static void NormalPhi(const Double_t *point, const Double_t *dir, Double_t *norm, Double_t c1, Double_t s1, Double_t c2, Double_t s2)
Static method to compute normal to phi planes.
virtual void Sizeof3D() const
fill size of this 3-D object
Double_t Sqrt(Double_t x)
Long64_t LocMin(Long64_t n, const T *a)
Int_t GetBasicColor() const
Get the basic color (0-7).
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the torus.
static constexpr double g