Logo ROOT   6.14/05
Reference Guide
EulerAngles.h
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Authors: W. Brown, M. Fischler, L. Moneta 2005
3 
4  /**********************************************************************
5  * *
6  * Copyright (c) 2005 , LCG ROOT MathLib Team *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Header file for class EulerAngles
12 //
13 // Created by: Lorenzo Moneta at Tue May 10 17:55:10 2005
14 //
15 // Last update: Tue May 10 17:55:10 2005
16 //
17 #ifndef ROOT_Math_GenVector_EulerAngles
18 #define ROOT_Math_GenVector_EulerAngles 1
19 
25 #include <algorithm>
26 #include <cassert>
27 
28 namespace ROOT {
29 namespace Math {
30 
31 
32 //__________________________________________________________________________________________
33  /**
34  EulerAngles class describing rotation as three angles (Euler Angles).
35  The Euler angles definition matches that of Classical Mechanics (Goldstein).
36  It is also the same convention defined in
37  <A HREF="http://mathworld.wolfram.com/EulerAngles.html">mathworld</A>
38  and used in Mathematica and CLHEP. Note that the ROOT class TRotation defines
39  a slightly different convention.
40 
41  @ingroup GenVector
42  */
43 class EulerAngles {
44 
45 public:
46 
47  typedef double Scalar;
48 
49  /**
50  Default constructor
51  */
52  EulerAngles() : fPhi(0.0), fTheta(0.0), fPsi(0.0) { }
53 
54  /**
55  Constructor from phi, theta and psi
56  */
57  EulerAngles( Scalar phi, Scalar theta, Scalar psi ) :
58  fPhi(phi), fTheta(theta), fPsi(psi)
59  {Rectify();} // Added 27 Jan. 06 JMM
60 
61  /**
62  Construct given a pair of pointers or iterators defining the
63  beginning and end of an array of three Scalars, to be treated as
64  the angles phi, theta and psi.
65  */
66  template<class IT>
67  EulerAngles(IT begin, IT end) { SetComponents(begin,end); }
68 
69  // The compiler-generated copy ctor, copy assignment, and dtor are OK.
70 
71  /**
72  Re-adjust components place angles in canonical ranges
73  */
74  void Rectify();
75 
76 
77  // ======== Construction and assignement from any other rotation ==================
78 
79  /**
80  Create from any other supported rotation (see gv_detail::convert )
81  */
82  template <class OtherRotation>
83  explicit EulerAngles(const OtherRotation & r) {gv_detail::convert(r,*this);}
84 
85  /**
86  Assign from any other rotation (see gv_detail::convert )
87  */
88  template <class OtherRotation>
89  EulerAngles & operator=( OtherRotation const & r ) {
90  gv_detail::convert(r,*this);
91  return *this;
92  }
93 
94 #ifdef OLD
95  explicit EulerAngles(const Rotation3D & r) {gv_detail::convert(r,*this);}
96 
97  /**
98  Construct from a rotation matrix
99  */
100  explicit EulerAngles(const Rotation3D & r) {gv_detail::convert(r,*this);}
101 
102  /**
103  Construct from a rotation represented by a Quaternion
104  */
105  explicit EulerAngles(const Quaternion & q) {gv_detail::convert(q,*this);}
106 
107  /**
108  Construct from an AxisAngle
109  */
110  explicit EulerAngles(const AxisAngle & a ) { gv_detail::convert(a, *this); }
111 
112  /**
113  Construct from an axial rotation
114  */
115  explicit EulerAngles( RotationZ const & r ) { gv_detail::convert(r, *this); }
116  explicit EulerAngles( RotationY const & r ) { gv_detail::convert(r, *this); }
117  explicit EulerAngles( RotationX const & r ) { gv_detail::convert(r, *this); }
118 
119 
120  /**
121  Assign from an AxisAngle
122  */
123  EulerAngles &
124  operator=( AxisAngle const & a ) { return operator=(EulerAngles(a)); }
125 
126  /**
127  Assign from a Quaternion
128  */
129  EulerAngles &
130  operator=( Quaternion const & q ) {return operator=(EulerAngles(q)); }
131 
132  /**
133  Assign from an axial rotation
134  */
135  EulerAngles &
136  operator=( RotationZ const & r ) { return operator=(EulerAngles(r)); }
137  EulerAngles &
138  operator=( RotationY const & r ) { return operator=(EulerAngles(r)); }
139  EulerAngles &
140  operator=( RotationX const & r ) { return operator=(EulerAngles(r)); }
141 
142 #endif
143 
144  // ======== Components ==============
145 
146  /**
147  Set the three Euler angles given a pair of pointers or iterators
148  defining the beginning and end of an array of three Scalars.
149  */
150  template<class IT>
151 #ifndef NDEBUG
152  void SetComponents(IT begin, IT end) {
153 #else
154  void SetComponents(IT begin, IT ) {
155 #endif
156  fPhi = *begin++;
157  fTheta = *begin++;
158  fPsi = *begin++;
159  assert(begin == end);
160  Rectify(); // Added 27 Jan. 06 JMM
161  }
162 
163  /**
164  Get the axis and then the angle into data specified by an iterator begin
165  and another to the end of the desired data (4 past start).
166  */
167  template<class IT>
168 #ifndef NDEBUG
169  void GetComponents(IT begin, IT end) const {
170 #else
171  void GetComponents(IT begin, IT ) const {
172 #endif
173  *begin++ = fPhi;
174  *begin++ = fTheta;
175  *begin++ = fPsi;
176  assert(begin == end);
177  }
178 
179  /**
180  Get the axis and then the angle into data specified by an iterator begin
181  */
182  template<class IT>
183  void GetComponents(IT begin) const {
184  *begin++ = fPhi;
185  *begin++ = fTheta;
186  *begin = fPsi;
187  }
188 
189  /**
190  Set the components phi, theta, psi based on three Scalars.
191  */
192  void SetComponents(Scalar phi, Scalar theta, Scalar psi) {
193  fPhi=phi; fTheta=theta; fPsi=psi;
194  Rectify(); // Added 27 Jan. 06 JMM
195  }
196 
197  /**
198  Get the components phi, theta, psi into three Scalars.
199  */
200  void GetComponents(Scalar & phi, Scalar & theta, Scalar & psi) const {
201  phi=fPhi; theta=fTheta; psi=fPsi;
202  }
203 
204  /**
205  Set Phi Euler angle // JMM 30 Jan. 2006
206  */
207  void SetPhi(Scalar phi) { fPhi=phi; Rectify(); }
208 
209  /**
210  Return Phi Euler angle
211  */
212  Scalar Phi() const { return fPhi; }
213 
214  /**
215  Set Theta Euler angle // JMM 30 Jan. 2006
216  */
217  void SetTheta(Scalar theta) { fTheta=theta; Rectify(); }
218 
219  /**
220  Return Theta Euler angle
221  */
222  Scalar Theta() const { return fTheta; }
223 
224  /**
225  Set Psi Euler angle // JMM 30 Jan. 2006
226  */
227  void SetPsi(Scalar psi) { fPsi=psi; Rectify(); }
228 
229  /**
230  Return Psi Euler angle
231  */
232  Scalar Psi() const { return fPsi; }
233 
234  // =========== operations ==============
235 
236 
237  /**
238  Rotation operation on a displacement vector in any coordinate system and tag
239  */
240  template <class CoordSystem, class U>
243  return Rotation3D(*this) ( v );
244  }
245 
246  /**
247  Rotation operation on a position vector in any coordinate system
248  */
249  template <class CoordSystem, class U>
254  return PositionVector3D<CoordSystem,U> ( rxyz );
255  }
256 
257  /**
258  Rotation operation on a Lorentz vector in any 4D coordinate system
259  */
260  template <class CoordSystem>
264  xyz = operator()(xyz);
265  LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
266  return LorentzVector<CoordSystem> ( xyzt );
267  }
268 
269  /**
270  Rotation operation on an arbitrary vector v.
271  Preconditions: v must implement methods x(), y(), and z()
272  and the arbitrary vector type must have a constructor taking (x,y,z)
273  */
274  template <class ForeignVector>
275  ForeignVector
276  operator() (const ForeignVector & v) const {
279  return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() );
280  }
281 
282  /**
283  Overload operator * for rotation on a vector
284  */
285  template <class AVector>
286  inline
287  AVector operator* (const AVector & v) const
288  {
289  return operator()(v);
290  }
291 
292  /**
293  Invert a rotation in place
294  */
295  // theta stays the same and negative rotation in Theta is done via a rotation
296  // of + PI in phi and Psi
297  void Invert() {
298  Scalar tmp = -fPhi;
299  fPhi = -fPsi + Pi();
300  fPsi=tmp + Pi();
301  }
302 
303  /**
304  Return inverse of a rotation
305  */
306  EulerAngles Inverse() const { return EulerAngles(-fPsi + Pi(), fTheta, -fPhi + Pi()); }
307 
308  // ========= Multi-Rotation Operations ===============
309 
310  /**
311  Multiply (combine) two rotations
312  */
313  EulerAngles operator * (const Rotation3D & r) const;
314  EulerAngles operator * (const AxisAngle & a) const;
315  EulerAngles operator * (const EulerAngles & e) const;
316  EulerAngles operator * (const Quaternion & q) const;
317  EulerAngles operator * (const RotationX & rx) const;
318  EulerAngles operator * (const RotationY & ry) const;
319  EulerAngles operator * (const RotationZ & rz) const;
320 
321  /**
322  Post-Multiply (on right) by another rotation : T = T*R
323  */
324  template <class R>
325  EulerAngles & operator *= (const R & r) { return *this = (*this)*r; }
326 
327  /**
328  Distance between two rotations
329  */
330  template <class R>
331  Scalar Distance ( const R & r ) const {return gv_detail::dist(*this,r);}
332 
333  /**
334  Equality/inequality operators
335  */
336  bool operator == (const EulerAngles & rhs) const {
337  if( fPhi != rhs.fPhi ) return false;
338  if( fTheta != rhs.fTheta ) return false;
339  if( fPsi != rhs.fPsi ) return false;
340  return true;
341  }
342  bool operator != (const EulerAngles & rhs) const {
343  return ! operator==(rhs);
344  }
345 
346 private:
347 
348  double fPhi; // Z rotation angle (first) defined in [-PI,PI]
349  double fTheta; // X rotation angle (second) defined only [0,PI]
350  double fPsi; // Z rotation angle (third) defined in [-PI,PI]
351 
352  static double Pi() { return M_PI; }
353 
354 }; // EulerAngles
355 
356 /**
357  Distance between two rotations
358  */
359 template <class R>
360 inline
361 typename EulerAngles::Scalar
362 Distance ( const EulerAngles& r1, const R & r2) {return gv_detail::dist(r1,r2);}
363 
364 /**
365  Multiplication of an axial rotation by an AxisAngle
366  */
367 EulerAngles operator* (RotationX const & r1, EulerAngles const & r2);
368 EulerAngles operator* (RotationY const & r1, EulerAngles const & r2);
369 EulerAngles operator* (RotationZ const & r1, EulerAngles const & r2);
370 
371 /**
372  Stream Output and Input
373  */
374  // TODO - I/O should be put in the manipulator form
375 
376 std::ostream & operator<< (std::ostream & os, const EulerAngles & e);
377 
378 } // namespace Math
379 } // namespace ROOT
380 
381 
382 #endif /* ROOT_Math_GenVector_EulerAngles */
Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system ...
Definition: LorentzVector.h:48
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
void SetPsi(Scalar psi)
Set Psi Euler angle // JMM 30 Jan.
Definition: EulerAngles.h:227
EulerAngles(IT begin, IT end)
Construct given a pair of pointers or iterators defining the beginning and end of an array of three S...
Definition: EulerAngles.h:67
EulerAngles & operator*=(const R &r)
Post-Multiply (on right) by another rotation : T = T*R.
Definition: EulerAngles.h:325
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
EulerAngles & operator=(OtherRotation const &r)
Assign from any other rotation (see gv_detail::convert )
Definition: EulerAngles.h:89
void SetComponents(IT begin, IT end)
Set the three Euler angles given a pair of pointers or iterators defining the beginning and end of an...
Definition: EulerAngles.h:152
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
void Rectify()
Re-adjust components place angles in canonical ranges.
Definition: EulerAngles.cxx:38
EulerAngles Inverse() const
Return inverse of a rotation.
Definition: EulerAngles.h:306
Class describing a generic position vector (point) in 3 dimensions.
EulerAngles(Scalar phi, Scalar theta, Scalar psi)
Constructor from phi, theta and psi.
Definition: EulerAngles.h:57
Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).
Definition: Quaternion.h:47
#define R(a, b, c, d, e, f, g, h, i)
Definition: RSha256.hxx:110
Scalar Phi() const
Return Phi Euler angle.
Definition: EulerAngles.h:212
std::ostream & operator<<(std::ostream &os, const AxisAngle &a)
Stream Output and Input.
Definition: AxisAngle.cxx:91
void Invert()
Invert a rotation in place.
Definition: EulerAngles.h:297
void SetTheta(Scalar theta)
Set Theta Euler angle // JMM 30 Jan.
Definition: EulerAngles.h:217
AxisAngle class describing rotation represented with direction axis (3D Vector) and an angle of rotat...
Definition: AxisAngle.h:41
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
Scalar Psi() const
Return Psi Euler angle.
Definition: EulerAngles.h:232
Rotation class representing a 3D rotation about the Y axis by the angle of rotation.
Definition: RotationY.h:43
void GetComponents(IT begin, IT end) const
Get the axis and then the angle into data specified by an iterator begin and another to the end of th...
Definition: EulerAngles.h:169
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
Scalar Theta() const
Return Theta Euler angle.
Definition: EulerAngles.h:222
Scalar E() const
return 4-th component (time, or energy for a 4-momentum vector)
DisplacementVector3D< CoordSystem, U > operator()(const DisplacementVector3D< CoordSystem, U > &v) const
Rotation operation on a displacement vector in any coordinate system and tag.
Definition: EulerAngles.h:242
void GetComponents(IT begin) const
Get the axis and then the angle into data specified by an iterator begin.
Definition: EulerAngles.h:183
Class describing a generic displacement vector in 3 dimensions.
ROOT::R::TRInterface & r
Definition: Object.C:4
#define M_PI
Definition: Rotated.cxx:105
SVector< double, 2 > v
Definition: Dict.h:5
auto * a
Definition: textangle.C:12
Rotation class representing a 3D rotation about the X axis by the angle of rotation.
Definition: RotationX.h:43
Rotation class with the (3D) rotation represented by a 3x3 orthogonal matrix.
Definition: Rotation3D.h:65
void SetComponents(Scalar phi, Scalar theta, Scalar psi)
Set the components phi, theta, psi based on three Scalars.
Definition: EulerAngles.h:192
bool operator!=(const EulerAngles &rhs) const
Definition: EulerAngles.h:342
void convert(R1 const &, R2 const)
Definition: 3DConversions.h:41
EulerAngles(const OtherRotation &r)
Create from any other supported rotation (see gv_detail::convert )
Definition: EulerAngles.h:83
EulerAngles()
Default constructor.
Definition: EulerAngles.h:52
void GetComponents(Scalar &phi, Scalar &theta, Scalar &psi) const
Get the components phi, theta, psi into three Scalars.
Definition: EulerAngles.h:200
EulerAngles class describing rotation as three angles (Euler Angles).
Definition: EulerAngles.h:43
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
Definition: TRolke.cxx:630
void SetPhi(Scalar phi)
Set Phi Euler angle // JMM 30 Jan.
Definition: EulerAngles.h:207
Namespace for new Math classes and functions.
Scalar Distance(const R &r) const
Distance between two rotations.
Definition: EulerAngles.h:331
AVector operator*(const AVector &v) const
Overload operator * for rotation on a vector.
Definition: EulerAngles.h:287
bool operator==(const EulerAngles &rhs) const
Equality/inequality operators.
Definition: EulerAngles.h:336
float * q
Definition: THbookFile.cxx:87
::ROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > > Vect() const
get the spatial components of the Vector in a DisplacementVector based on Cartesian Coordinates ...
static double Pi()
Definition: EulerAngles.h:352