48 template<
typename Architecture_t,
typename Layer_t = TLayer<Architecture_t>>
52 using Matrix_t =
typename Architecture_t::Matrix_t;
53 using Scalar_t =
typename Architecture_t::Scalar_t;
70 template<
typename OtherArchitecture_t>
74 TNet(
size_t batchSize,
91 template <
typename SharedLayer>
124 bool includeRegularization =
true);
140 const Layer_t &
GetLayer(
size_t i)
const {
return fLayers[i];}
159 template<
typename Architecture_t,
typename Layer_t>
169 template<
typename Architecture_t,
typename Layer_t>
171 : fBatchSize(other.fBatchSize), fInputWidth(other.fInputWidth),
172 fLayers(other.fLayers), fDummy(0,0), fJ(other.fJ), fR(other.fR),
173 fWeightDecay(other.fWeightDecay)
179 template<
typename Architecture_t,
typename Layer_t>
180 template<
typename OtherArchitecture_t>
183 : fBatchSize(batchSize), fInputWidth(other.GetInputWidth()), fLayers(),
184 fDummy(0,0), fJ(other.GetLossFunction()), fR(other.GetRegularization()),
185 fWeightDecay(other.GetWeightDecay())
188 for (
size_t i = 0; i < other.
GetDepth(); i++) {
189 AddLayer(other.
GetLayer(i).GetWidth(),
190 other.
GetLayer(i).GetActivationFunction(),
191 other.
GetLayer(i).GetDropoutProbability());
198 template<
typename Architecture_t,
typename Layer_t>
204 : fBatchSize(batchSize), fInputWidth(inputWidth), fLayers(), fDummy(0,0),
205 fJ(J), fR(R), fWeightDecay(weightDecay)
211 template<
typename Architecture_t,
typename Layer_t>
217 for (
auto &
l : fLayers) {
224 template<
typename Architecture_t,
typename Layer_t>
229 if (fLayers.size() == 0) {
230 fLayers.emplace_back(fBatchSize, fInputWidth, width, f, dropoutProbability);
232 size_t prevWidth = fLayers.back().GetWidth();
233 fLayers.emplace_back(fBatchSize, prevWidth, width, f, dropoutProbability);
238 template<
typename Architecture_t,
typename Layer_t>
245 template<
typename Architecture_t,
typename Layer_t>
246 template<
typename SharedLayer_t>
249 fLayers.emplace_back(fBatchSize, layer);
253 template<
typename Architecture_t,
typename Layer_t>
256 for (
auto &
l : fLayers) {
262 template<
typename Architecture_t,
typename Layer_t>
265 for (
auto &
l : fLayers) {
266 initialize<Architecture_t>(
l.GetWeightGradients(), EInitialization::kZero);
267 initialize<Architecture_t>(
l.GetBiasGradients(), EInitialization::kZero);
272 template<
typename Architecture_t,
typename Layer_t>
276 fLayers.front().
Forward(input, applyDropout);
278 for (
size_t i = 1; i < fLayers.size(); i++) {
279 fLayers[i].Forward(fLayers[i-1].GetOutput(), applyDropout);
284 template <
typename Architecture_t,
typename Layer_t>
288 evaluateGradients<Architecture_t>(fLayers.back().GetActivationGradients(), fJ, Y, fLayers.back().GetOutput(),
291 for (
size_t i = fLayers.size()-1; i > 0; i--) {
292 auto & activation_gradient_backward
293 = fLayers[i-1].GetActivationGradients();
294 auto & activations_backward
296 fLayers[i].Backward(activation_gradient_backward,
297 activations_backward, fR, fWeightDecay);
299 fLayers[0].Backward(fDummy, X, fR, fWeightDecay);
304 template <
typename Architecture_t,
typename Layer_t>
306 bool includeRegularization)
const ->
Scalar_t 308 auto loss = evaluate<Architecture_t>(fJ, Y, fLayers.back().GetOutput(), weights);
310 if (includeRegularization) {
311 for (
auto &
l : fLayers) {
312 loss += fWeightDecay * regularization<Architecture_t>(
l.GetWeights(), fR);
319 template <
typename Architecture_t,
typename Layer_t>
321 bool applyDropout,
bool includeRegularization) ->
Scalar_t 323 Forward(X, applyDropout);
324 return Loss(Y, weights, includeRegularization);
328 template<
typename Architecture_t,
typename Layer_t>
334 evaluate<Architecture_t>(Yhat,
f, fLayers.back().GetOutput());
338 template<
typename Architecture_t,
typename Layer_t>
342 evaluate<Architecture_t>(Y_hat,
f, fLayers.back().GetOutput());
346 template<
typename Architecture_t,
typename Layer_t>
355 for(
size_t i = 0; i < fLayers.size(); i++) {
356 Layer_t & layer = fLayers[i];
360 flops += nb * nl * (2.0 * nlp - 1);
362 flops += 2 * nb * nl;
366 flops += nlp * nl * (2.0 * nb - 1.0);
367 flops += nl * (nb - 1);
369 flops += nlp * nb * (2.0 * nl - 1.0);
377 template<
typename Architecture_t,
typename Layer_t>
379 const std::vector<Double_t> & probabilities)
381 for (
size_t i = 0; i < fLayers.size(); i++) {
382 if (i < probabilities.size()) {
383 fLayers[i].SetDropoutProbability(probabilities[i]);
385 fLayers[i].SetDropoutProbability(1.0);
391 template<
typename Architecture_t,
typename Layer_t>
394 std::cout <<
"DEEP NEURAL NETWORK:";
395 std::cout <<
" Loss function = " <<
static_cast<char>(fJ);
396 std::cout <<
", Depth = " << fLayers.size() << std::endl;
399 for (
auto &
l : fLayers) {
400 std::cout <<
"DNN Layer " << i <<
":" << std::endl;
Scalar_t Loss(const Matrix_t &Y, const Matrix_t &weights, bool includeRegularization=true) const
Evaluate the loss function of the net using the activations that are currently stored in the output l...
Matrix_t fDummy
Empty matrix for last step in back propagation.
void SetDropoutProbabilities(const std::vector< Double_t > &probabilities)
image html pict1_TGaxis_012 png width
Define new text attributes for the label number "labNum".
LayerIterator_t LayersBegin()
Iterator to the first layer of the net.
std::vector< Layer_t > fLayers
Layers in the network.
void SetWeightDecay(Scalar_t weightDecay)
#define R(a, b, c, d, e, f, g, h, i)
ELossFunction fJ
The loss function of the network.
Scalar_t GetWeightDecay() const
void AddLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0)
Add a layer of the given size to the neural net.
size_t fInputWidth
Number of features in a single input event.
void Initialize(EInitialization m)
Initialize the weights in the net with the initialization method.
double weightDecay(double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization)
compute the weight decay for regularization (L1 or L2)
typename std::vector< TLayer< Architecture_t > >::iterator LayerIterator_t
Generic neural network class.
void Forward(Matrix_t &X, bool applyDropout=false)
Forward a given input through the neural net.
size_t fBatchSize
Batch size for training and evaluation of the Network.
Scalar_t fWeightDecay
The weight decay factor.
LayerIterator_t LayersEnd()
Iterator to the last layer of the net.
void Initialize(Bool_t useTMVAStyle=kTRUE)
typename Architecture_t::Matrix_t Matrix_t
ERegularization GetRegularization() const
void SetRegularization(ERegularization R)
void Clear()
Remove all layers from the network.
void Backward(const Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights)
Compute the weight gradients in the net from the given training samples X and training labels Y...
TNet< Architecture_t, TSharedLayer< Architecture_t > > CreateClone(size_t batchSize)
Create a clone that uses the same weight and biases matrices but potentially a difference batch size...
size_t GetOutputWidth() const
typename Architecture_t::Scalar_t Scalar_t
size_t GetInputWidth() const
void Print(std::ostream &os, const OptionType &opt)
ERegularization fR
The regularization used for the network.
EOutputFunction
Enum that represents output functions.
ELossFunction
Enum that represents objective functions for the net, i.e.
Abstract ClassifierFactory template that handles arbitrary types.
void InitializeGradients()
Initialize the gradients in the net to zero.
void SetLossFunction(ELossFunction J)
void Prediction(Matrix_t &Y_hat, Matrix_t &X, EOutputFunction f)
Compute the neural network predictionion obtained from forwarding the batch X through the neural netw...
void SetInputWidth(size_t inputWidth)
ERegularization
Enum representing the regularization type applied for a given layer.
EActivationFunction
Enum that represents layer activation functions.
size_t GetBatchSize() const
Layer_t & GetLayer(size_t i)
void SetBatchSize(size_t batchSize)
const Layer_t & GetLayer(size_t i) const
ELossFunction GetLossFunction() const