|
ROOT 6.16/01 Reference Guide |
template recursive functions for defining evaluation of Chebyshev polynomials T_n(x) and the series S(x) = Sum_i c_i* T_i(x) More...
Functions | |
| template<int N> | |
| double | Eval (double x, const double *c) |
| template<> | |
| double | Eval< 0 > (double, const double *c) |
| template<> | |
| double | Eval< 1 > (double x, const double *c) |
| template<> | |
| double | Eval< 2 > (double x, const double *c) |
| template<> | |
| double | Eval< 3 > (double x, const double *c) |
| template<int N> | |
| double | T (double x) |
| template<> | |
| double | T< 0 > (double) |
| template<> | |
| double | T< 1 > (double x) |
| template<> | |
| double | T< 2 > (double x) |
| template<> | |
| double | T< 3 > (double x) |
template recursive functions for defining evaluation of Chebyshev polynomials T_n(x) and the series S(x) = Sum_i c_i* T_i(x)
| double ROOT::Math::Chebyshev::Eval | ( | double | x, |
| const double * | c | ||
| ) |
Definition at line 43 of file ChebyshevPol.h.
| double ROOT::Math::Chebyshev::Eval< 0 > | ( | double | , |
| const double * | c | ||
| ) |
Definition at line 29 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::Eval< 1 > | ( | double | x, |
| const double * | c | ||
| ) |
Definition at line 30 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::Eval< 2 > | ( | double | x, |
| const double * | c | ||
| ) |
Definition at line 31 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::Eval< 3 > | ( | double | x, |
| const double * | c | ||
| ) |
Definition at line 32 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::T | ( | double | x | ) |
Definition at line 34 of file ChebyshevPol.h.
| double ROOT::Math::Chebyshev::T< 0 > | ( | double | ) |
Definition at line 24 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::T< 1 > | ( | double | x | ) |
Definition at line 25 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::T< 2 > | ( | double | x | ) |
Definition at line 26 of file ChebyshevPol.cxx.
| double ROOT::Math::Chebyshev::T< 3 > | ( | double | x | ) |
Definition at line 27 of file ChebyshevPol.cxx.