75      return output.CountChar(
',')+1;
 
   81                               fStructure.
Last(
':') - fStructure.
First(
':') - 1));
 
   86         num = atoi(
TString(hidden(beg, end - beg)).Data());
 
   89         end = hidden.
Index(
":", beg + 1);
 
   90         if(layer==
cnt) 
return num;
 
   94      if(layer==
cnt) 
return num;
 
  112      brName = 
TString(input(beg, end - beg));
 
  114         brName = brName(1,brName.
Length()-1);
 
  116      end = input.
Index(
",", beg + 1);
 
  117      if(
cnt==idx) 
return brName;
 
  122      brName = brName(1,brName.
Length()-1);
 
  132   return neuron ? neuron->
GetName() : 
"NO SUCH NEURON";
 
  141   return neuron ? neuron->
GetName() : 
"NO SUCH NEURON";
 
  150   std::cout << 
"Network with structure: " << fStructure.
Data() << std::endl;
 
  151   std::cout << 
"inputs with low values in the differences plot may not be needed" << std::endl;
 
  153   char var[64], sel[64];
 
  162           << 
" +/- " << tmp->
GetRMS() << std::endl;
 
  186   Int_t i(0), j(0), k(0), 
l(0);
 
  189      pos = re.
Index(formula,&len);
 
  190      if(pos==-1 || len<3) {
 
  195         TString newformula(formula,pos);
 
  196         TString val = formula(pos+1,len-2);
 
  198         formula = newformula;
 
  199         index[i] = val.
Atoi();
 
  201      TH1D tmp(
"tmpb", 
"tmpb", 1, -FLT_MAX, FLT_MAX);
 
  221      leaflist+=
Form(
"In%d/D:",i);
 
  226   for (i=0; i<numOutNodes; i++)
 
  227      leaflist+=
Form(
"Out%d/D:",i);
 
  232   for (i=0; i<numOutNodes; i++)
 
  233      leaflist+=
Form(
"True%d/D:",i);
 
  239   for(j=0; j< nEvents; j++) {
 
  257            params[i] += shift*rms[i];
 
  259            params[i] -= 2*shift*rms[i];
 
  263            params[i] += shift*rms[i];
 
  274   for(i=0; i<
GetNeurons(1); i++) 
delete formulas[i];
 
  288   snprintf(sel,64, 
"inNeuron==%d", i);
 
  314   THStack* stack  = 
new THStack(
"differences",
"differences (impact of variables on ANN)");
 
  317   char var[64], sel[64];
 
  320      snprintf(sel,64, 
"inNeuron==%d", i);
 
  328   stack->
Draw(
"nostack");
 
  344   THStack* stack = 
new THStack(
"__NNout_TMLPA",
Form(
"Neural net output (neuron %d)",neuron));
 
  345   TH1F *bgh  = 
new TH1F(
"__bgh_TMLPA", 
"NN output", 50, -0.5, 1.5);
 
  346   TH1F *sigh = 
new TH1F(
"__sigh_TMLPA", 
"NN output", 50, -0.5, 1.5);
 
  354   data->
Draw(
">>__tmpSig_MLPA",signal,
"goff");
 
  355   data->
Draw(
">>__tmpBkg_MLPA",bg,
"goff");
 
  358   nEvents = bg_list->
GetN();
 
  359   for(j=0; j< nEvents; j++) {
 
  363   nEvents = signal_list->
GetN();
 
  364   for(j=0; j< nEvents; j++) {
 
  379   legend->
AddEntry(bgh, 
"Background");
 
  381   stack->
Draw(
"nostack");
 
  405   drawline.
Form(
"Out.Out%d-True.True%d:True.True%d>>",
 
  406                 outnode, outnode, outnode);
 
  407   fIOTree->
Draw(drawline+pipehist+
"(20)", 
"", 
"goff prof");
 
  412      h->SetTitle(
Form(
"#Delta(output - truth) vs. truth for %s",
 
  414      h->GetXaxis()->SetTitle(title);
 
  415      h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s", title));
 
  417   if (!strstr(option,
"goff"))
 
  435                           "Deviation of MLP output from truth");
 
  439   if (!option || !strstr(option,
"goff"))
 
  440      leg=
new TLegend(.4,.85,.95,.95,
"#Delta(output - truth) vs. truth for:");
 
  442   const char* xAxisTitle=0;
 
  448      h->SetLineColor(1+outnode);
 
  453         xAxisTitle=
h->GetXaxis()->GetTitle();
 
  480   TString pipehist=
Form(
"MLP_truthdev_i%d_o%d", innode, outnode);
 
  482   drawline.
Form(
"Out.Out%d-True.True%d:In.In%d>>",
 
  483                 outnode, outnode, innode);
 
  484   fIOTree->
Draw(drawline+pipehist+
"(50)", 
"", 
"goff prof");
 
  489   h->SetTitle(
Form(
"#Delta(output - truth) of %s vs. input %s",
 
  490                    titleOutNeuron, titleInNeuron));
 
  491   h->GetXaxis()->SetTitle(
Form(
"%s", titleInNeuron));
 
  492   h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s",
 
  494   if (!strstr(option,
"goff"))
 
  511   sName.
Form(
"MLP_TruthDeviationIO_%d", outnode);
 
  514                           Form(
"Deviation of MLP output %s from truth",
 
  519   if (!option || !strstr(option,
"goff"))
 
  521                      Form(
"#Delta(output - truth) of %s vs. input for:",
 
  528   for (innode=0; innode<numInNodes; innode++) {
 
  530      h->SetLineColor(1+innode);
 
  532      if (
leg) 
leg->AddEntry(
h,
h->GetXaxis()->GetTitle());
 
char * Form(const char *fmt,...)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Double_t GetRMS(Int_t axis=1) const
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
The Histogram stack class.
virtual void Draw(Option_t *chopt="")
Draw this multihist with its current attributes.
TAxis * GetYaxis() const
Get x axis of the histogram used to draw the stack.
virtual void Add(TH1 *h, Option_t *option="")
add a new histogram to the list Only 1-d and 2-d histograms currently supported.
TAxis * GetXaxis() const
Get x axis of the histogram used to draw the stack.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
This utility class contains a set of tests usefull when developing a neural network.
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
Int_t GetLayers()
Returns the number of layers.
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
void CheckNetwork()
Gives some information about the network in the terminal.
void GatherInformations()
Collect information about what is useful in the network.
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value,...
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMultiLayerPerceptron * fNetwork
virtual ~TMLPAnalyzer()
Destructor.
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
TString GetStructure() const
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
This class describes an elementary neuron, which is the basic element for a Neural Network.
Regular expression class.
Ssiz_t Index(const TString &str, Ssiz_t *len, Ssiz_t start=0) const
Find the first occurrence of the regexp in string and return the position, or -1 if there is no match...
Int_t Atoi() const
Return integer value of string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
TString & Remove(Ssiz_t pos)
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree represents a columnar dataset.
virtual Int_t Fill()
Fill all branches.
virtual void SetDirectory(TDirectory *dir)
Change the tree's directory.
virtual void SetEventList(TEventList *list)
This function transfroms the given TEventList into a TEntryList The new TEntryList is owned by the TT...
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.
TEventList * GetEventList() const
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
Double_t Sqrt(Double_t x)
static void output(int code)