75 return output.CountChar(
',')+1;
81 fStructure.
Last(
':') - fStructure.
First(
':') - 1));
86 num = atoi(
TString(hidden(beg, end - beg)).Data());
89 end = hidden.
Index(
":", beg + 1);
90 if(layer==
cnt)
return num;
94 if(layer==
cnt)
return num;
112 brName =
TString(input(beg, end - beg));
114 brName = brName(1,brName.
Length()-1);
116 end = input.
Index(
",", beg + 1);
117 if(
cnt==idx)
return brName;
122 brName = brName(1,brName.
Length()-1);
132 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
141 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
150 std::cout <<
"Network with structure: " << fStructure.
Data() << std::endl;
151 std::cout <<
"inputs with low values in the differences plot may not be needed" << std::endl;
153 char var[64], sel[64];
162 <<
" +/- " << tmp->
GetRMS() << std::endl;
186 Int_t i(0), j(0), k(0),
l(0);
189 pos = re.
Index(formula,&len);
190 if(pos==-1 || len<3) {
195 TString newformula(formula,pos);
196 TString val = formula(pos+1,len-2);
198 formula = newformula;
199 index[i] = val.
Atoi();
201 TH1D tmp(
"tmpb",
"tmpb", 1, -FLT_MAX, FLT_MAX);
221 leaflist+=
Form(
"In%d/D:",i);
226 for (i=0; i<numOutNodes; i++)
227 leaflist+=
Form(
"Out%d/D:",i);
232 for (i=0; i<numOutNodes; i++)
233 leaflist+=
Form(
"True%d/D:",i);
239 for(j=0; j< nEvents; j++) {
257 params[i] += shift*rms[i];
259 params[i] -= 2*shift*rms[i];
263 params[i] += shift*rms[i];
274 for(i=0; i<
GetNeurons(1); i++)
delete formulas[i];
288 snprintf(sel,64,
"inNeuron==%d", i);
314 THStack* stack =
new THStack(
"differences",
"differences (impact of variables on ANN)");
317 char var[64], sel[64];
320 snprintf(sel,64,
"inNeuron==%d", i);
328 stack->
Draw(
"nostack");
344 THStack* stack =
new THStack(
"__NNout_TMLPA",
Form(
"Neural net output (neuron %d)",neuron));
345 TH1F *bgh =
new TH1F(
"__bgh_TMLPA",
"NN output", 50, -0.5, 1.5);
346 TH1F *sigh =
new TH1F(
"__sigh_TMLPA",
"NN output", 50, -0.5, 1.5);
354 data->
Draw(
">>__tmpSig_MLPA",signal,
"goff");
355 data->
Draw(
">>__tmpBkg_MLPA",bg,
"goff");
358 nEvents = bg_list->
GetN();
359 for(j=0; j< nEvents; j++) {
363 nEvents = signal_list->
GetN();
364 for(j=0; j< nEvents; j++) {
379 legend->
AddEntry(bgh,
"Background");
381 stack->
Draw(
"nostack");
405 drawline.
Form(
"Out.Out%d-True.True%d:True.True%d>>",
406 outnode, outnode, outnode);
407 fIOTree->
Draw(drawline+pipehist+
"(20)",
"",
"goff prof");
412 h->SetTitle(
Form(
"#Delta(output - truth) vs. truth for %s",
414 h->GetXaxis()->SetTitle(title);
415 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s", title));
417 if (!strstr(option,
"goff"))
435 "Deviation of MLP output from truth");
439 if (!option || !strstr(option,
"goff"))
440 leg=
new TLegend(.4,.85,.95,.95,
"#Delta(output - truth) vs. truth for:");
442 const char* xAxisTitle=0;
448 h->SetLineColor(1+outnode);
453 xAxisTitle=
h->GetXaxis()->GetTitle();
480 TString pipehist=
Form(
"MLP_truthdev_i%d_o%d", innode, outnode);
482 drawline.
Form(
"Out.Out%d-True.True%d:In.In%d>>",
483 outnode, outnode, innode);
484 fIOTree->
Draw(drawline+pipehist+
"(50)",
"",
"goff prof");
489 h->SetTitle(
Form(
"#Delta(output - truth) of %s vs. input %s",
490 titleOutNeuron, titleInNeuron));
491 h->GetXaxis()->SetTitle(
Form(
"%s", titleInNeuron));
492 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s",
494 if (!strstr(option,
"goff"))
511 sName.
Form(
"MLP_TruthDeviationIO_%d", outnode);
514 Form(
"Deviation of MLP output %s from truth",
519 if (!option || !strstr(option,
"goff"))
521 Form(
"#Delta(output - truth) of %s vs. input for:",
528 for (innode=0; innode<numInNodes; innode++) {
530 h->SetLineColor(1+innode);
532 if (
leg)
leg->AddEntry(
h,
h->GetXaxis()->GetTitle());
char * Form(const char *fmt,...)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Double_t GetRMS(Int_t axis=1) const
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
The Histogram stack class.
virtual void Draw(Option_t *chopt="")
Draw this multihist with its current attributes.
TAxis * GetYaxis() const
Get x axis of the histogram used to draw the stack.
virtual void Add(TH1 *h, Option_t *option="")
add a new histogram to the list Only 1-d and 2-d histograms currently supported.
TAxis * GetXaxis() const
Get x axis of the histogram used to draw the stack.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
This utility class contains a set of tests usefull when developing a neural network.
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
Int_t GetLayers()
Returns the number of layers.
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
void CheckNetwork()
Gives some information about the network in the terminal.
void GatherInformations()
Collect information about what is useful in the network.
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value,...
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMultiLayerPerceptron * fNetwork
virtual ~TMLPAnalyzer()
Destructor.
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
TString GetStructure() const
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
This class describes an elementary neuron, which is the basic element for a Neural Network.
Regular expression class.
Ssiz_t Index(const TString &str, Ssiz_t *len, Ssiz_t start=0) const
Find the first occurrence of the regexp in string and return the position, or -1 if there is no match...
Int_t Atoi() const
Return integer value of string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
TString & Remove(Ssiz_t pos)
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree represents a columnar dataset.
virtual Int_t Fill()
Fill all branches.
virtual void SetDirectory(TDirectory *dir)
Change the tree's directory.
virtual void SetEventList(TEventList *list)
This function transfroms the given TEventList into a TEntryList The new TEntryList is owned by the TT...
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.
TEventList * GetEventList() const
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
Double_t Sqrt(Double_t x)
static void output(int code)