190#define TOLERANCE (1.0E-6)
196: fxx(1.0), fxy(0.0), fxz(0.0), fyx(0.0), fyy(1.0), fyz(0.0),
197 fzx(0.0), fzy(0.0), fzz(1.0) {}
203 fxx(
m.fxx), fxy(
m.fxy), fxz(
m.fxz), fyx(
m.fyx), fyy(
m.fyy), fyz(
m.fyz),
204 fzx(
m.fzx), fzy(
m.fzy), fzz(
m.fzz) {}
212: fxx(mxx), fxy(mxy), fxz(mxz), fyx(myx), fyy(myy), fyz(myz),
213 fzx(mzx), fzy(mzy), fzz(mzz) {}
220 if (j == 0) {
return fxx; }
221 if (j == 1) {
return fxy; }
222 if (j == 2) {
return fxz; }
224 if (j == 0) {
return fyx; }
225 if (j == 1) {
return fyy; }
226 if (j == 2) {
return fyz; }
228 if (j == 0) {
return fzx; }
229 if (j == 1) {
return fzy; }
230 if (j == 2) {
return fzz; }
233 Warning(
"operator()(i,j)",
"bad indices (%d , %d)",i,j);
260 double two_r2 = 2 *
Q.fRealPart *
Q.fRealPart;
261 double two_x2 = 2 *
Q.fVectorPart.X() *
Q.fVectorPart.X();
262 double two_y2 = 2 *
Q.fVectorPart.Y() *
Q.fVectorPart.Y();
263 double two_z2 = 2 *
Q.fVectorPart.Z() *
Q.fVectorPart.Z();
264 double two_xy = 2 *
Q.fVectorPart.X() *
Q.fVectorPart.Y();
265 double two_xz = 2 *
Q.fVectorPart.X() *
Q.fVectorPart.Z();
266 double two_xr = 2 *
Q.fVectorPart.X() *
Q.fRealPart;
267 double two_yz = 2 *
Q.fVectorPart.Y() *
Q.fVectorPart.Z();
268 double two_yr = 2 *
Q.fVectorPart.Y() *
Q.fRealPart;
269 double two_zr = 2 *
Q.fVectorPart.Z() *
Q.fRealPart;
272 double mag2 =
Q.QMag2();
276 fxx = two_r2 + two_x2;
277 fyy = two_r2 + two_y2;
278 fzz = two_r2 + two_z2;
281 fxy = two_xy - two_zr;
282 fyx = two_xy + two_zr;
285 fxz = two_xz + two_yr;
286 fzx = two_xz - two_yr;
289 fyz = two_yz - two_xr;
290 fzy = two_yz + two_xr;
328 Warning(
"Rotate(angle,axis)",
" zero axis");
331 Double_t dx = axis.
X()/ll, dy = axis.
Y()/ll, dz = axis.
Z()/ll;
333 ca+(1-ca)*dx*dx, (1-ca)*dx*dy-sa*dz, (1-ca)*dx*dz+sa*dy,
334 (1-ca)*dy*dx+sa*dz, ca+(1-ca)*dy*dy, (1-ca)*dy*dz-sa*dx,
335 (1-ca)*dz*dx-sa*dy, (1-ca)*dz*dy+sa*dx, ca+(1-ca)*dz*dz );
408 Warning(
"RotateAxes",
"bad axis vectors");
412 newX.
Y(), newY.
Y(), newZ.
Y(),
413 newX.
Z(), newY.
Z(), newZ.
Z()));
583 Warning(
"GetPhi()",
" |fzz| > 1 ");
589 const Double_t cscTheta = 1/sinTheta;
592 Warning(
"GetPhi()",
"finds | cos phi | > 1");
598 }
else if (
fzx < 0) {
600 }
else if (
fzy > 0) {
609 }
else if (
fxy < 0) {
645 double finalPsi = 0.0;
649 Warning(
"GetPsi()",
" |fzz| > 1 ");
655 const Double_t cscTheta = 1/sinTheta;
658 Warning(
"GetPsi()",
"| cos psi | > 1 ");
664 }
else if (
fxz < 0) {
672 Warning(
"GetPsi()",
"| fxx | > 1 ");
678 }
else if (
fyx < 0) {
771 Warning(
"MakeBasis(X,Y,Z)",
"non-zero Z Axis is required");
782 yAxis = zAxis.
Cross(xAxis)*(1.0/xmag);
790 xAxis = yAxis.
Cross(zAxis);
Mother of all ROOT objects.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Quaternion is a 4-component mathematic object quite convenient when dealing with space rotation (or r...
The TRotation class describes a rotation of objects of the TVector3 class.
TRotation & SetToIdentity()
TRotation & SetZAxis(const TVector3 &axis)
Set Z axis.
Double_t PhiY() const
Return Phi.
TRotation & Rotate(Double_t, const TVector3 &)
Rotate along an axis.
void SetXPhi(Double_t)
Set XPhi.
Double_t GetYPhi(void) const
Return YPhi.
Double_t operator()(int, int) const
Dereferencing operator const.
Double_t ThetaY() const
Return Theta.
TRotation & RotateYEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the y-convention.
void SetYPhi(Double_t)
Set YPhi.
TRotation & SetYAxis(const TVector3 &axis)
Set Y axis.
Double_t GetXPsi(void) const
Get psi angle.
void SetXPsi(Double_t)
Set XPsi.
Double_t PhiX() const
Return Phi.
TRotation & Transform(const TRotation &)
TRotation & RotateY(Double_t)
Rotate around y.
Double_t PhiZ() const
Return Phi.
TRotation & RotateZ(Double_t)
Rotate around z.
TVector3 operator*(const TVector3 &) const
Double_t GetYPsi(void) const
Return YPsi.
Double_t GetYTheta(void) const
Return YTheta.
TRotation & RotateXEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the x-convention.
TRotation & SetXEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the x-convention (Landau and Lifshitz, Goldstein, &c) by doing the explicit rotations.
void AngleAxis(Double_t &, TVector3 &) const
Rotation defined by an angle and a vector.
Double_t ThetaZ() const
Return Theta.
void SetYPsi(Double_t)
Set YPsi.
void SetYTheta(Double_t)
Set YTheta.
TRotation & SetYEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the y-convention.
void MakeBasis(TVector3 &xAxis, TVector3 &yAxis, TVector3 &zAxis) const
Make the Z axis into a unit variable.
TRotation & RotateAxes(const TVector3 &newX, const TVector3 &newY, const TVector3 &newZ)
Rotate axes.
void SetXTheta(Double_t)
Set XTheta.
Double_t GetXPhi(void) const
Return phi angle.
TRotation & SetXAxis(const TVector3 &axis)
Set X axis.
Double_t GetXTheta(void) const
Return XTheta.
Double_t ThetaX() const
Return Theta.
TRotation & RotateX(Double_t)
Rotate around x.
TVector3 is a general three vector class, which can be used for the description of different vectors ...
Double_t Dot(const TVector3 &) const
TVector3 Orthogonal() const
TVector3 Cross(const TVector3 &) const
static constexpr double s
constexpr Double_t PiOver2()
Double_t ATan2(Double_t y, Double_t x)
Double_t Sqrt(Double_t x)