11#ifndef ROOSTATS_HypoTestInverterResult
12#define ROOSTATS_HypoTestInverterResult
24class SamplingDistribution;
68 double CLb(
int index)
const;
71 double CLs(
int index)
const;
178 double GetExpectedLimit(
double nsig,
bool lower,
const char * opt =
"" )
const ;
#define ClassDef(name, id)
RooRealVar represents a variable that can be changed from the outside.
This class is now deprecated and to be replaced by the HypoTestInverter.
Class to plot an HypoTestInverterResult, result of the HypoTestInverter calculator.
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
double GetGraphX(const TGraph &g, double y0, bool lowSearch=true) const
virtual void SetTestSize(Double_t size)
set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval)
void SetInterpolationOption(InterpolOption_t opt)
set the interpolation option, linear (kLinear ) or spline (kSpline)
Double_t LowerLimit()
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
Double_t LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
bool fInterpolateUpperLimit
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
SamplingDistribution * GetLowerLimitDistribution() const
get expected lower limit distributions implemented using interpolation The size for the sampling dist...
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
double fCLsCleanupThreshold
Double_t UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
double fLowerLimitError
interpolation option (linear or spline)
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0)
Return an error estimate on the upper(lower) limit.
InterpolOption_t fInterpolOption
HypoTestInverterResult(const char *name=0)
default constructor
int ArraySize() const
number of entries in the results array
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
bool fInterpolateLowerLimit
two sided scan (look for lower/upper limit)
virtual void SetConfidenceLevel(Double_t cl)
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
std::vector< double > fXValues
number of points used to build expected p-values
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
double CLsError(int index) const
return the observed CLb value for the i-th entry
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
double CLbError(int index) const
return the observed CLb value for the i-th entry
void UseCLs(bool on=true)
flag to switch between using CLsb (default) or CLs as confidence level
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
InterpolOption_t GetInterpolationOption() const
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
virtual ~HypoTestInverterResult()
destructor
bool IsOneSided() const
query if one sided result
double GetLastYError() const
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
TList fExpPValues
list of HypoTestResult for each point
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
HypoTestResult * GetLastResult() const
static int fgAsymptoticNumPoints
max sigma value used to scan asymptotic expected p values
static double fgAsymptoticMaxSigma
int ExclusionCleanup()
remove points that appear to have failed.
double CLs(int index) const
return the observed CLb value for the i-th entry
double GetLastYValue() const
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
void SetCLsCleanupThreshold(Double_t th)
set CLs threshold for exclusion cleanup function
double CLb(int index) const
return the observed CLb value for the i-th entry
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
SamplingDistribution * GetUpperLimitDistribution() const
get expected upper limit distributions implemented using interpolation
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
double GetLastXValue() const
SamplingDistribution * GetAltTestStatDist(int index) const
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
bool IsTwoSided() const
query if two sided result
A class for performing a hypothesis test inversion by scanning the hypothesis test results of a HypoT...
HypoTestResult is a base class for results from hypothesis tests.
This class simply holds a sampling distribution of some test statistic.
SimpleInterval is a concrete implementation of the ConfInterval interface.
Double_t fConfidenceLevel
A TGraph is an object made of two arrays X and Y with npoints each.
Namespace for the RooStats classes.