Logo ROOT  
Reference Guide
IParamFunction.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Author: L. Moneta Tue Nov 14 14:20:07 2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class IParamFunction
12
13#ifndef ROOT_Math_IParamFunction
14#define ROOT_Math_IParamFunction
15
16#include "Math/IFunction.h"
17
19
20#include "Math/Util.h"
21
22
23#include <cassert>
24
25/**
26 @defgroup ParamFunc Parameteric Function Evaluation Interfaces.
27 Interfaces classes for evaluation of parametric functions
28 @ingroup CppFunctions
29*/
30
31
32namespace ROOT {
33
34 namespace Math {
35
36
37//___________________________________________________________________
38 /**
39 Documentation for the abstract class IBaseParam.
40 It defines the interface for dealing with the function parameters
41 This is used only for internal convinience, to avoid redefining the Parameter API
42 for the one and the multi-dim functions.
43 Concrete class should derive from ROOT::Math::IParamFunction and not from this class.
44
45 @ingroup ParamFunc
46 */
47
48 class IBaseParam {
49
50 public:
51
52
53 /**
54 Virtual Destructor (no operations)
55 */
56 virtual ~IBaseParam() {}
57
58
59 /**
60 Access the parameter values
61 */
62 virtual const double *Parameters() const = 0;
63
64 /**
65 Set the parameter values
66 @param p vector of doubles containing the parameter values.
67
68 to be defined: can user change number of params ? At the moment no.
69
70 */
71 virtual void SetParameters(const double *p) = 0;
72
73
74 /**
75 Return the number of Parameters
76 */
77 virtual unsigned int NPar() const = 0;
78
79 /**
80 Return the name of the i-th parameter (starting from zero)
81 Overwrite if want to avoid the default name ("Par_0, Par_1, ...")
82 */
83 virtual std::string ParameterName(unsigned int i) const
84 {
85 assert(i < NPar());
86 return "Par_" + Util::ToString(i);
87 }
88
89
90 };
91
92//___________________________________________________________________
93 /**
94 IParamFunction interface (abstract class) describing multi-dimensional parameteric functions
95 It is a derived class from ROOT::Math::IBaseFunctionMultiDim and
96 ROOT::Math::IBaseParam
97
98 Provides the interface for evaluating a function passing a coordinate vector and a parameter vector.
99
100 @ingroup ParamFunc
101 */
102
103 template<class T>
105 virtual public IBaseParam {
106 public:
107
109
110 /**
111 Evaluate function at a point x and for given parameters p.
112 This method does not change the internal status of the function (internal parameter values).
113 If for some reason one prefers caching the parameter values, SetParameters(p) and then operator()(x) should be
114 called.
115 Use the pure virtual function DoEvalPar to implement it
116 */
117
118 /* Reimplementation instead of using BaseParamFunc::operator();
119 until the bug in VS is fixed */
120 T operator()(const T *x, const double *p) const
121 {
122 return DoEvalPar(x, p);
123 }
124
125 T operator()(const T *x) const
126 {
127 return DoEval(x);
128 }
129
130 private:
131 /**
132 Implementation of the evaluation function using the x values and the parameters.
133 Must be implemented by derived classes
134 */
135 virtual T DoEvalPar(const T *x, const double *p) const = 0;
136
137 /**
138 Implement the ROOT::Math::IBaseFunctionMultiDim interface DoEval(x) using the cached parameter values
139 */
140 virtual T DoEval(const T *x) const
141 {
142 return DoEvalPar(x, Parameters());
143 }
144 };
145
146
147//___________________________________________________________________
148 /**
149 Specialized IParamFunction interface (abstract class) for one-dimensional parametric functions
150 It is a derived class from ROOT::Math::IBaseFunctionOneDim and
151 ROOT::Math::IBaseParam
152
153 @ingroup ParamFunc
154 */
155
157 virtual public IBaseFunctionOneDim,
158 public IBaseParam {
159
160
161 public:
162
164
165
166 using BaseFunc::operator();
167
168 /**
169 Evaluate function at a point x and for given parameters p.
170 This method does not change the internal status of the function (internal parameter values).
171 If for some reason one prefers caching the parameter values, SetParameters(p) and then operator()(x) should be
172 called.
173 Use the pure virtual function DoEvalPar to implement it
174 */
175 double operator()(double x, const double *p) const
176 {
177 return DoEvalPar(x, p);
178 }
179
180
181 /**
182 multidim-like interface
183 */
184 double operator()(const double *x, const double *p) const
185 {
186 return DoEvalPar(*x, p);
187 }
188
189 private:
190
191 /**
192 Implementation of the evaluation function using the x value and the parameters.
193 Must be implemented by derived classes
194 */
195 virtual double DoEvalPar(double x, const double *p) const = 0;
196
197 /**
198 Implement the ROOT::Math::IBaseFunctionOneDim interface DoEval(x) using the cached parameter values
199 */
200 virtual double DoEval(double x) const
201 {
202 return DoEvalPar(x, Parameters());
203 }
204
205 };
206
207
208
209//_______________________________________________________________________________
210 /**
211 Interface (abstract class) for parametric gradient multi-dimensional functions providing
212 in addition to function evaluation with respect to the coordinates
213 also the gradient with respect to the parameters, via the method ParameterGradient.
214
215 It is a derived class from ROOT::Math::IParametricFunctionMultiDim.
216
217 The pure private virtual method DoParameterGradient must be implemented by the derived classes
218 in addition to those inherited by the base abstract classes.
219
220 @ingroup ParamFunc
221 */
222
223 template<class T>
225 public:
226
230
231
232 /**
233 Virtual Destructor (no operations)
234 */
236
237
238 /* Reimplementation instead of using BaseParamFunc::operator();
239 until the bug in VS is fixed */
240 T operator()(const T *x, const double *p) const
241 {
242 return DoEvalPar(x, p);
243 }
244
245 T operator()(const T *x) const
246 {
247 return DoEval(x);
248 }
249
250 /**
251 Evaluate the all the derivatives (gradient vector) of the function with respect to the parameters at a point x.
252 It is optional to be implemented by the derived classes for better efficiency
253 */
254 virtual void ParameterGradient(const T *x, const double *p, T *grad) const
255 {
256 unsigned int npar = NPar();
257 for (unsigned int ipar = 0; ipar < npar; ++ipar)
258 grad[ipar] = DoParameterDerivative(x, p, ipar);
259 }
260
261 /**
262 Evaluate the partial derivative w.r.t a parameter ipar from values and parameters
263 */
264 T ParameterDerivative(const T *x, const double *p, unsigned int ipar = 0) const
265 {
266 return DoParameterDerivative(x, p, ipar);
267 }
268
269 /**
270 Evaluate all derivatives using cached parameter values
271 */
272 void ParameterGradient(const T *x, T *grad) const { return ParameterGradient(x, Parameters(), grad); }
273 /**
274 Evaluate partial derivative using cached parameter values
275 */
276 T ParameterDerivative(const T *x, unsigned int ipar = 0) const
277 {
278 return DoParameterDerivative(x, Parameters() , ipar);
279 }
280
281 private:
282
283 /**
284 Evaluate the partial derivative w.r.t a parameter ipar , to be implemented by the derived classes
285 */
286 virtual T DoParameterDerivative(const T *x, const double *p, unsigned int ipar) const = 0;
287 virtual T DoEvalPar(const T *x, const double *p) const = 0;
288 virtual T DoEval(const T *x) const
289 {
290 return DoEvalPar(x, Parameters());
291 }
292 };
293
294//_______________________________________________________________________________
295 /**
296 Interface (abstract class) for parametric one-dimensional gradient functions providing
297 in addition to function evaluation with respect the coordinates
298 also the gradient with respect to the parameters, via the method ParameterGradient.
299
300 It is a derived class from ROOT::Math::IParametricFunctionOneDim.
301
302 The pure private virtual method DoParameterGradient must be implemented by the derived classes
303 in addition to those inherited by the base abstract classes.
304
305 @ingroup ParamFunc
306 */
307
310// ,public IGradientFunctionOneDim
311 {
312
313 public:
314
318
319
320 /**
321 Virtual Destructor (no operations)
322 */
324
325
326 using BaseParamFunc::operator();
327
328 /**
329 Evaluate the derivatives of the function with respect to the parameters at a point x.
330 It is optional to be implemented by the derived classes for better efficiency if needed
331 */
332 virtual void ParameterGradient(double x , const double *p, double *grad) const
333 {
334 unsigned int npar = NPar();
335 for (unsigned int ipar = 0; ipar < npar; ++ipar)
336 grad[ipar] = DoParameterDerivative(x, p, ipar);
337 }
338
339 /**
340 Evaluate all derivatives using cached parameter values
341 */
342 void ParameterGradient(double x , double *grad) const
343 {
344 return ParameterGradient(x, Parameters(), grad);
345 }
346
347 /**
348 Compatibility interface with multi-dimensional functions
349 */
350 void ParameterGradient(const double *x , const double *p, double *grad) const
351 {
352 ParameterGradient(*x, p, grad);
353 }
354
355 /**
356 Evaluate all derivatives using cached parameter values (multi-dim like interface)
357 */
358 void ParameterGradient(const double *x , double *grad) const
359 {
360 return ParameterGradient(*x, Parameters(), grad);
361 }
362
363
364 /**
365 Partial derivative with respect a parameter
366 */
367 double ParameterDerivative(double x, const double *p, unsigned int ipar = 0) const
368 {
369 return DoParameterDerivative(x, p, ipar);
370 }
371
372 /**
373 Evaluate partial derivative using cached parameter values
374 */
375 double ParameterDerivative(double x, unsigned int ipar = 0) const
376 {
377 return DoParameterDerivative(x, Parameters() , ipar);
378 }
379
380 /**
381 Partial derivative with respect a parameter
382 Compatibility interface with multi-dimensional functions
383 */
384 double ParameterDerivative(const double *x, const double *p, unsigned int ipar = 0) const
385 {
386 return DoParameterDerivative(*x, p, ipar);
387 }
388
389
390 /**
391 Evaluate partial derivative using cached parameter values (multi-dim like interface)
392 */
393 double ParameterDerivative(const double *x, unsigned int ipar = 0) const
394 {
395 return DoParameterDerivative(*x, Parameters() , ipar);
396 }
397
398
399
400 private:
401
402
403 /**
404 Evaluate the gradient, to be implemented by the derived classes
405 */
406 virtual double DoParameterDerivative(double x, const double *p, unsigned int ipar) const = 0;
407
408
409 };
410
411
412
413
414 } // end namespace Math
415
416} // end namespace ROOT
417
418
419
420#endif /* ROOT_Math_IParamFunction */
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
Definition: IFunction.h:135
Documentation for the abstract class IBaseParam.
virtual void SetParameters(const double *p)=0
Set the parameter values.
virtual const double * Parameters() const =0
Access the parameter values.
virtual std::string ParameterName(unsigned int i) const
Return the name of the i-th parameter (starting from zero) Overwrite if want to avoid the default nam...
virtual ~IBaseParam()
Virtual Destructor (no operations)
virtual unsigned int NPar() const =0
Return the number of Parameters.
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Definition: IFunction.h:327
Interface (abstract class) for one-dimensional functions providing a gradient calculation.
Definition: IFunction.h:383
IParamFunction interface (abstract class) describing multi-dimensional parameteric functions It is a ...
T operator()(const T *x, const double *p) const
Evaluate function at a point x and for given parameters p.
virtual T DoEval(const T *x) const
Implement the ROOT::Math::IBaseFunctionMultiDim interface DoEval(x) using the cached parameter values...
IBaseFunctionMultiDimTempl< T > BaseFunc
virtual T DoEvalPar(const T *x, const double *p) const =0
Implementation of the evaluation function using the x values and the parameters.
Specialized IParamFunction interface (abstract class) for one-dimensional parametric functions It is ...
virtual double DoEval(double x) const
Implement the ROOT::Math::IBaseFunctionOneDim interface DoEval(x) using the cached parameter values.
virtual double DoEvalPar(double x, const double *p) const =0
Implementation of the evaluation function using the x value and the parameters.
double operator()(double x, const double *p) const
Evaluate function at a point x and for given parameters p.
double operator()(const double *x, const double *p) const
multidim-like interface
Interface (abstract class) for parametric gradient multi-dimensional functions providing in addition ...
T operator()(const T *x, const double *p) const
virtual void ParameterGradient(const T *x, const double *p, T *grad) const
Evaluate the all the derivatives (gradient vector) of the function with respect to the parameters at ...
T ParameterDerivative(const T *x, const double *p, unsigned int ipar=0) const
Evaluate the partial derivative w.r.t a parameter ipar from values and parameters.
T ParameterDerivative(const T *x, unsigned int ipar=0) const
Evaluate partial derivative using cached parameter values.
virtual ~IParametricGradFunctionMultiDimTempl()
Virtual Destructor (no operations)
virtual T DoEvalPar(const T *x, const double *p) const =0
Implementation of the evaluation function using the x values and the parameters.
void ParameterGradient(const T *x, T *grad) const
Evaluate all derivatives using cached parameter values.
virtual T DoParameterDerivative(const T *x, const double *p, unsigned int ipar) const =0
Evaluate the partial derivative w.r.t a parameter ipar , to be implemented by the derived classes.
virtual T DoEval(const T *x) const
Implement the ROOT::Math::IBaseFunctionMultiDim interface DoEval(x) using the cached parameter values...
Interface (abstract class) for parametric one-dimensional gradient functions providing in addition to...
IParametricFunctionOneDim BaseParamFunc
double ParameterDerivative(const double *x, const double *p, unsigned int ipar=0) const
Partial derivative with respect a parameter Compatibility interface with multi-dimensional functions.
IParametricFunctionOneDim::BaseFunc BaseFunc
void ParameterGradient(const double *x, const double *p, double *grad) const
Compatibility interface with multi-dimensional functions.
virtual void ParameterGradient(double x, const double *p, double *grad) const
Evaluate the derivatives of the function with respect to the parameters at a point x.
double ParameterDerivative(const double *x, unsigned int ipar=0) const
Evaluate partial derivative using cached parameter values (multi-dim like interface)
virtual ~IParametricGradFunctionOneDim()
Virtual Destructor (no operations)
void ParameterGradient(double x, double *grad) const
Evaluate all derivatives using cached parameter values.
double ParameterDerivative(double x, unsigned int ipar=0) const
Evaluate partial derivative using cached parameter values.
virtual double DoParameterDerivative(double x, const double *p, unsigned int ipar) const =0
Evaluate the gradient, to be implemented by the derived classes.
void ParameterGradient(const double *x, double *grad) const
Evaluate all derivatives using cached parameter values (multi-dim like interface)
double ParameterDerivative(double x, const double *p, unsigned int ipar=0) const
Partial derivative with respect a parameter.
Double_t x[n]
Definition: legend1.C:17
Namespace for new Math classes and functions.
double T(double x)
Definition: ChebyshevPol.h:34
std::string ToString(const T &val)
Utility function for conversion to strings.
Definition: Util.h:50
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Definition: StringConv.hxx:21