Logo ROOT  
Reference Guide
Rotation3DxAxial.cxx
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Authors: W. Brown, M. Fischler, L. Moneta 2005
3
5
9
10namespace ROOT {
11
12namespace Math {
13
15 // combination of a Rotation3D with a RotationX
16 Scalar s = rx.SinAngle();
17 Scalar c = rx.CosAngle();
18 return Rotation3D
19 (
20 fM[kXX], fM[kXY]*c + fM[kXZ]*s, fM[kXZ]*c - fM[kXY]*s
21 , fM[kYX], fM[kYY]*c + fM[kYZ]*s, fM[kYZ]*c - fM[kYY]*s
22 , fM[kZX], fM[kZY]*c + fM[kZZ]*s, fM[kZZ]*c - fM[kZY]*s
23 );
24}
25
27 // combination of a Rotation3D with a RotationY
28 Scalar s = ry.SinAngle();
29 Scalar c = ry.CosAngle();
30 return Rotation3D
31 (
32 fM[kXX]*c - fM[kXZ]*s, fM[kXY], fM[kXX]*s + fM[kXZ]*c
33 , fM[kYX]*c - fM[kYZ]*s, fM[kYY], fM[kYX]*s + fM[kYZ]*c
34 , fM[kZX]*c - fM[kZZ]*s, fM[kZY], fM[kZX]*s + fM[kZZ]*c
35 );
36}
37
38
40 // combination of a Rotation3D with a RotationZ
41 Scalar s = rz.SinAngle();
42 Scalar c = rz.CosAngle();
43 return Rotation3D
44 (
45 fM[kXX]*c + fM[kXY]*s, fM[kXY]*c - fM[kXX]*s, fM[kXZ]
46 , fM[kYX]*c + fM[kYY]*s, fM[kYY]*c - fM[kYX]*s, fM[kYZ]
47 , fM[kZX]*c + fM[kZY]*s, fM[kZY]*c - fM[kZX]*s, fM[kZZ]
48 );
49}
50
51Rotation3D operator* (RotationX const & r1, Rotation3D const & r2) {
52 // combination of a RotationX with a Rotation3D
53 // TODO -- recode for much better efficiency!
54 return Rotation3D(r1)*r2;
55}
56
57Rotation3D operator* (RotationY const & r1, Rotation3D const & r2) {
58 // combination of a RotationY with a Rotation3D
59 // TODO -- recode for much better efficiency!
60 return Rotation3D(r1)*r2;
61}
62
63Rotation3D operator* (RotationZ const & r1, Rotation3D const & r2) {
64 // combination of a RotationZ with a Rotation3D
65 // TODO -- recode for much better efficiency!
66 return Rotation3D(r1)*r2;
67}
68
70
71// Rx * Ry
72Rotation3D operator* (RotationX const & rx, RotationY const & ry) {
73 Scalar sx = rx.SinAngle();
74 Scalar cx = rx.CosAngle();
75 Scalar sy = ry.SinAngle();
76 Scalar cy = ry.CosAngle();
77 return Rotation3D
78 ( cy , 0 , sy ,
79 sx*sy , cx , -sx*cy ,
80 -sy*cx , sx , cx*cy );
81}
82
83// Rx * Rz
84Rotation3D operator* (RotationX const & rx, RotationZ const & rz) {
85 Scalar sx = rx.SinAngle();
86 Scalar cx = rx.CosAngle();
87 Scalar sz = rz.SinAngle();
88 Scalar cz = rz.CosAngle();
89 return Rotation3D
90 ( cz , -sz , 0 ,
91 cx*sz , cx*cz , -sx ,
92 sx*sz , cz*sx , cx );
93}
94
95// Ry * Rx
96Rotation3D operator* (RotationY const & ry, RotationX const & rx) {
97 Scalar sx = rx.SinAngle();
98 Scalar cx = rx.CosAngle();
99 Scalar sy = ry.SinAngle();
100 Scalar cy = ry.CosAngle();
101 return Rotation3D
102 ( cy , sx*sy , sy*cx ,
103 0 , cx , -sx ,
104 -sy , cy*sx , cx*cy );
105}
106
107// Ry * Rz
108Rotation3D operator* (RotationY const & ry, RotationZ const & rz) {
109 Scalar sy = ry.SinAngle();
110 Scalar cy = ry.CosAngle();
111 Scalar sz = rz.SinAngle();
112 Scalar cz = rz.CosAngle();
113 return Rotation3D
114 ( cy*cz ,-cy*sz , sy ,
115 sz , cz , 0 ,
116 -cz*sy , sy*sz , cy );
117}
118
119// Rz * Rx
120Rotation3D operator* (RotationZ const & rz, RotationX const & rx) {
121 Scalar sx = rx.SinAngle();
122 Scalar cx = rx.CosAngle();
123 Scalar sz = rz.SinAngle();
124 Scalar cz = rz.CosAngle();
125 return Rotation3D
126 ( cz ,-cx*sz , sx*sz ,
127 sz , cx*cz ,-cz*sx ,
128 0 , sx , cx );
129}
130
131// Rz * Ry
132Rotation3D operator* (RotationZ const & rz, RotationY const & ry) {
133 Scalar sy = ry.SinAngle();
134 Scalar cy = ry.CosAngle();
135 Scalar sz = rz.SinAngle();
136 Scalar cz = rz.CosAngle();
137 return Rotation3D
138 ( cy*cz , -sz , cz*sy ,
139 cy*sz , cz , sy*sz ,
140 -sy , 0 , cy );
141}
142
143
144
145
146} //namespace Math
147} //namespace ROOT
#define c(i)
Definition: RSha256.hxx:101
Rotation class with the (3D) rotation represented by a 3x3 orthogonal matrix.
Definition: Rotation3D.h:65
AVector operator*(const AVector &v) const
Overload operator * for rotation on a vector.
Definition: Rotation3D.h:401
Rotation3D()
Default constructor (identity rotation)
Definition: Rotation3D.cxx:29
Rotation class representing a 3D rotation about the X axis by the angle of rotation.
Definition: RotationX.h:43
Scalar CosAngle() const
Definition: RotationX.h:109
Scalar SinAngle() const
Sine or Cosine of the rotation angle.
Definition: RotationX.h:108
Rotation class representing a 3D rotation about the Y axis by the angle of rotation.
Definition: RotationY.h:43
Scalar CosAngle() const
Definition: RotationY.h:109
Scalar SinAngle() const
Sine or Cosine of the rotation angle.
Definition: RotationY.h:108
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
Scalar CosAngle() const
Definition: RotationZ.h:109
Scalar SinAngle() const
Sine or Cosine of the rotation angle.
Definition: RotationZ.h:108
Namespace for new Math classes and functions.
AxisAngle operator*(RotationX const &r1, AxisAngle const &r2)
Multiplication of an axial rotation by an AxisAngle.
Rotation3D::Scalar Scalar
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Definition: RNumpyDS.hxx:30
static constexpr double s