72REveTrans::REveTrans() :
74 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
88 fA1(t.fA1), fA2(t.fA2), fA3(t.fA3), fAsOK(t.fAsOK),
89 fUseTrans (t.fUseTrans),
90 fEditTrans(t.fEditTrans),
102 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
105 fEditRotation(
kTRUE),
116 fA1(0), fA2(0), fA3(0), fAsOK(
kFALSE),
119 fEditRotation(
kTRUE),
164 memcpy(
fM, t.
fM,
sizeof(
fM));
165 if (copyAngles && t.
fAsOK) {
178 for(
Int_t i=0; i<16; ++i)
fM[i] = arr[i];
187 for(
Int_t i=0; i<16; ++i)
fM[i] = arr[i];
203 t(i,j) = -s; t(j,i) = s;
219 static const float kFromToEpsilon = 0.000001f;
225 f = (
e < 0.0f) ? -
e :
e;
227 if (
f > 1.0f - kFromToEpsilon)
233 x.fX = (from.
fX > 0.0f) ? from.
fX : -from.
fX;
234 x.fY = (from.
fY > 0.0f) ? from.
fY : -from.
fY;
235 x.fZ = (from.
fZ > 0.0f) ? from.
fZ : -from.
fZ;
240 x.fX = 1.0f;
x.fY =
x.fZ = 0.0f;
242 x.fZ = 1.0f;
x.fX =
x.fY = 0.0f;
248 x.fY = 1.0f;
x.fX =
x.fZ = 0.0f;
250 x.fZ = 1.0f;
x.fX =
x.fY = 0.0f;
258 c2 = 2.0f /
v.Mag2();
261 for (
int i = 0; i < 3; i++) {
262 for (
int j = 0; j < 3; j++) {
263 CM(i, j) = -
c1 * u[i] * u[j]
274 Float_t h, hvx, hvz, hvxy, hvxz, hvyz;
282 CM(0, 0) =
e + hvx *
v.fX;
283 CM(0, 1) = hvxy -
v.fZ;
284 CM(0, 2) = hvxz +
v.fY;
286 CM(1, 0) = hvxy +
v.fZ;
287 CM(1, 1) =
e +
h *
v.fY *
v.fY;
288 CM(1, 2) = hvyz -
v.fX;
290 CM(2, 0) = hvxz -
v.fY;
291 CM(2, 1) = hvyz +
v.fX;
292 CM(2, 2) =
e + hvz *
v.fZ;
303 for(
int c=0;
c<4; ++
c, col+=4) {
305 for(
int r=0;
r<4; ++
r, ++row)
306 buf[
r] = row[0]*col[0] + row[4]*col[1] + row[8]*col[2] + row[12]*col[3];
307 col[0] = buf[0]; col[1] = buf[1]; col[2] = buf[2]; col[3] = buf[3];
319 for(
int r=0;
r<4; ++
r, ++row) {
321 for(
int c=0;
c<4; ++
c, col+=4)
322 buf[
c] = row[0]*col[0] + row[4]*col[1] + row[8]*col[2] + row[12]*col[3];
323 row[0] = buf[0]; row[4] = buf[1]; row[8] = buf[2]; row[12] = buf[3];
357 fM[
F03] += amount*col[0];
fM[
F13] += amount*col[1];
fM[
F23] += amount*col[2];
381 --i1 <<= 2; --i2 <<= 2;
382 for (
int r=0;
r<4; ++
r, ++row) {
383 b1 =
cos*row[i1] +
sin*row[i2];
384 b2 =
cos*row[i2] -
sin*row[i1];
385 row[i1] = b1; row[i2] = b2;
395 fM[
F03 + --ai] += amount;
421 for(
int c=0;
c<4; ++
c, col+=4) {
422 b1 =
cos*col[i1] -
sin*col[i2];
423 b2 =
cos*col[i2] +
sin*col[i1];
424 col[i1] = b1; col[i2] = b2;
435 fM[
F03] += amount*vec[0];
436 fM[
F13] += amount*vec[1];
437 fM[
F23] += amount*vec[2];
472 col[0] =
x; col[1] =
y; col[2] = z;
499 v.SetXYZ(col[0], col[1], col[2]);
575 clamp_angle(a1); clamp_angle(a2); clamp_angle(a3);
603 int n = strspn(pat,
"XxYyZz");
if(
n > 3)
n = 3;
607 for(
int i=0; i<
n; i++) {
608 if(isupper(pat[i]))
a[i] = -
a[i];
610 case 'x':
case 'X':
RotateLF(2, 3,
a[i]);
break;
611 case 'y':
case 'Y':
RotateLF(3, 1,
a[i]);
break;
612 case 'z':
case 'Z':
RotateLF(1, 2,
a[i]);
break;
627 if(
d>1)
d=1;
else if(
d<-1)
d=-1;
659 return (sx + sy + sz)/3;
827 c[0] /=
l;
c[1] /=
l;
c[2] /=
l;
838 const Double_t dp =
c[0]*rc[0] +
c[1]*rc[1] +
c[2]*rc[2];
839 c[0] -= rc[0]*dp;
c[1] -= rc[1]*dp;
c[2] -= rc[2]*dp;
908 throw(eh +
"matrix is singular.");
911 const Double_t oneOverDet = 1.0/det;
912 const Double_t mn1OverDet = - oneOverDet;
914 fM[
F00] = det3_123_123 * oneOverDet;
915 fM[
F01] = det3_023_123 * mn1OverDet;
916 fM[
F02] = det3_013_123 * oneOverDet;
917 fM[
F03] = det3_012_123 * mn1OverDet;
919 fM[
F10] = det3_123_023 * mn1OverDet;
920 fM[
F11] = det3_023_023 * oneOverDet;
921 fM[
F12] = det3_013_023 * mn1OverDet;
922 fM[
F13] = det3_012_023 * oneOverDet;
924 fM[
F20] = det3_123_013 * oneOverDet;
925 fM[
F21] = det3_023_013 * mn1OverDet;
926 fM[
F22] = det3_013_013 * oneOverDet;
927 fM[
F23] = det3_012_013 * mn1OverDet;
929 fM[
F30] = det3_123_012 * mn1OverDet;
930 fM[
F31] = det3_023_012 * oneOverDet;
931 fM[
F32] = det3_013_012 * mn1OverDet;
932 fM[
F33] = det3_012_012 * oneOverDet;
941void REveTrans::Streamer(
TBuffer &R__b)
944 REveTrans::Class()->ReadBuffer(R__b,
this);
947 REveTrans::Class()->WriteBuffer(R__b,
this);
957 for(
Int_t i=0; i<4; ++i, ++row)
958 printf(
"%8.3f %8.3f %8.3f | %8.3f\n", row[0], row[4], row[8], row[12]);
968 s.setf(std::ios::fixed, std::ios::floatfield);
970 for(
Int_t i=1; i<=4; i++)
971 for(
Int_t j=1; j<=4; j++)
972 s << t(i,j) << ((j==4) ?
"\n" :
"\t");
1000 m[0] =
r[0]*s[0];
m[1] =
r[3]*s[0];
m[2] =
r[6]*s[0];
m[3] = 0;
1001 m[4] =
r[1]*s[1];
m[5] =
r[4]*s[1];
m[6] =
r[7]*s[1];
m[7] = 0;
1002 m[8] =
r[2]*s[2];
m[9] =
r[5]*s[2];
m[10] =
r[8]*s[2];
m[11] = 0;
1003 m[12] = t[0];
m[13] = t[1];
m[14] = t[2];
m[15] = 1;
1007 m[0] =
r[0];
m[1] =
r[3];
m[2] =
r[6];
m[3] = 0;
1008 m[4] =
r[1];
m[5] =
r[4];
m[6] =
r[7];
m[7] = 0;
1009 m[8] =
r[2];
m[9] =
r[5];
m[10] =
r[8];
m[11] = 0;
1010 m[12] = t[0];
m[13] = t[1];
m[14] = t[2];
m[15] = 1;
1028 r[0] =
m[0]/s[0];
r[3] =
m[1]/s[0];
r[6] =
m[2]/s[0];
m += 4;
1029 r[1] =
m[0]/s[1];
r[4] =
m[1]/s[1];
r[7] =
m[2]/s[1];
m += 4;
1030 r[2] =
m[0]/s[2];
r[5] =
m[1]/s[2];
r[8] =
m[2]/s[2];
m += 4;
1031 t[0] =
m[0]; t[1] =
m[1]; t[2] =
m[2];
1036 r[0] = 1;
r[3] = 0;
r[6] = 0;
1037 r[1] = 0;
r[4] = 1;
r[7] = 0;
1038 r[2] = 0;
r[5] = 0;
r[8] = 1;
1039 s[0] = s[1] = s[2] = 1;
1040 t[0] = t[1] = t[2] = 0;
1055 m[0] =
fM[0];
m[1] =
fM[4];
m[2] =
fM[8];
m[3] =
fM[3];
1056 m[4] =
fM[1];
m[5] =
fM[5];
m[6] =
fM[9];
m[7] =
fM[7];
1057 m[8] =
fM[2];
m[9] =
fM[6];
m[10] =
fM[10];
m[11] =
fM[11];
1058 m[12] =
fM[12];
m[13] =
fM[13];
m[14] =
fM[14];
m[15] =
fM[15];
1077 if (s < low || s > high)
return kTRUE;
1079 if (s < low || s > high)
return kTRUE;
1081 if (s < low || s > high)
return kTRUE;
TBuffer & operator<<(TBuffer &buf, const Tmpl *obj)
REveException Exception-type thrown by Eve classes.
REveTrans operator*(const REveTrans &t)
Copy, multiply from right and return product.
void UnitRot()
Reset rotation part of the matrix to unity.
void SetBuffer3D(TBuffer3D &buff)
Fill transformation part TBuffer3D core section.
void SetupRotation(Int_t i, Int_t j, Double_t f)
Setup the matrix as an elementary rotation.
Double_t Norm3Column(Int_t col)
Norm 3-vector in column col.
virtual void Print(Option_t *option="") const
Print in reasonable format.
void SetScaleY(Double_t sy)
Change y scaling.
void RotatePF(Int_t i1, Int_t i2, Double_t amount)
Rotate in parent frame. Does optimised version of MultLeft.
Double_t Invert()
Invert matrix.
void MultiplyIP(TVector3 &v, Double_t w=1) const
Multiply vector in-place.
void RotateLF(Int_t i1, Int_t i2, Double_t amount)
Rotate in local frame. Does optimised version of MultRight.
void GetScale(Double_t &sx, Double_t &sy, Double_t &sz) const
Deduce scales from sizes of base vectors.
REveTrans()
Default constructor.
void TransposeRotationPart()
Transpose 3x3 rotation sub-matrix.
void ZeroTrans(Double_t w=1.0)
Reset matrix to zero, only the perspective scaling is set to w (1 by default).
void Move3PF(Double_t x, Double_t y, Double_t z)
General move in parent-frame.
void SetTrans(const REveTrans &t, Bool_t copyAngles=kTRUE)
Set matrix from another,.
void SetFromArray(const Double_t arr[16])
Set matrix from Double_t array.
void MovePF(Int_t ai, Double_t amount)
Move in parent-frame along axis index ai.
void SetBaseVec(Int_t b, Double_t x, Double_t y, Double_t z)
Set base-vector with index b.
void SetScaleX(Double_t sx)
Change x scaling.
void MoveLF(Int_t ai, Double_t amount)
Move in local-frame along axis with index ai.
Double_t Orto3Column(Int_t col, Int_t ref)
Orto-norm 3-vector in column col with respect to column ref.
void SetGeoHMatrix(TGeoHMatrix &mat)
Set TGeoHMatrix mat.
void SetScale(Double_t sx, Double_t sy, Double_t sz)
Set scaling.
void OrtoNorm3()
Orto-norm columns 1 to 3.
void Move(const REveTrans &a, Int_t ai, Double_t amount)
Move in a's coord-system along axis-index ai.
void SetFrom(Double_t *carr)
void Move3LF(Double_t x, Double_t y, Double_t z)
General move in local-frame.
void GetRotAngles(Float_t *x) const
Get Cardan rotation angles (pattern xYz above).
void SetupFromToVec(const REveVector &from, const REveVector &to)
A function for creating a rotation matrix that rotates a vector called "from" into another vector cal...
Double_t CM(Int_t i, Int_t j) const
TVector3 Multiply(const TVector3 &v, Double_t w=1) const
Multiply vector and return it.
void SetPos(Double_t x, Double_t y, Double_t z)
Set position (base-vec 4).
void Scale(Double_t sx, Double_t sy, Double_t sz)
Scale matrix. Translation part untouched.
void UnitTrans()
Reset matrix to unity.
Bool_t IsScale(Double_t low=0.9, Double_t high=1.1) const
Test if the transformation is a scale.
void Move3(const REveTrans &a, Double_t x, Double_t y, Double_t z)
General move in a's coord-system.
void RotateIP(TVector3 &v) const
Rotate vector in-place. Translation is NOT applied.
void MultRight(const REveTrans &t)
Multiply from right: this = this * t.
Double_t Unscale()
Remove scaling, make all base vectors of unit length.
void SetScaleZ(Double_t sz)
Change z scaling.
void SetRotByAnyAngles(Float_t a1, Float_t a2, Float_t a3, const char *pat)
Sets Rotation part as given by angles a1, a1, a3 and pattern pat.
void SetRotByAngles(Float_t a1, Float_t a2, Float_t a3)
void MultLeft(const REveTrans &t)
Multiply from left: this = t * this.
TVector3 GetBaseVec(Int_t b) const
Get base-vector with index b.
void Rotate(const REveTrans &a, Int_t i1, Int_t i2, Double_t amount)
Rotate in a's coord-system, rotating base vector with index i1 into i2.
REveVectorT Cross(const REveVectorT &a) const
REveVectorT & Sub(const REveVectorT &a, const REveVectorT &b)
TT Dot(const REveVectorT &a) const
Generic 3D primitive description class.
Double_t fLocalMaster[16]
Buffer base class used for serializing objects.
Matrix class used for computing global transformations Should NOT be used for node definition.
virtual const Double_t * GetScale() const
virtual const Double_t * GetTranslation() const
virtual const Double_t * GetRotationMatrix() const
Geometrical transformation package.
virtual const Double_t * GetTranslation() const =0
virtual const Double_t * GetScale() const =0
virtual const Double_t * GetRotationMatrix() const =0
Mother of all ROOT objects.
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
TVector3 is a general three vector class, which can be used for the description of different vectors ...
void SetXYZ(Double_t x, Double_t y, Double_t z)
Double_t ATan2(Double_t y, Double_t x)
Double_t Sqrt(Double_t x)
constexpr Double_t TwoPi()