Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
testUnfold2.C File Reference

Detailed Description

View in nbviewer Open in SWAN Test program as an example for a user specific regularisation scheme.

  1. Generate Monte Carlo and Data events The events consist of:

    • signal
    • background

    The signal is a resonance. It is generated with a Breit-Wigner, smeared by a Gaussian

  2. Unfold the data. The result is:
    • The background level
    • The shape of the resonance, corrected for detector effects

      The regularisation is done on the curvature, excluding the bins near the peak.

  3. produce some plots
tau=0.000286365
chi**2=160.946+4.9728 / 147
(int) 0
#include <TMath.h>
#include <TCanvas.h>
#include <TRandom3.h>
#include <TFitter.h>
#include <TF1.h>
#include <TStyle.h>
#include <TVector.h>
#include <TGraph.h>
#include "TUnfold.h"
using namespace std;
TRandom *rnd=0;
// generate an event
// output:
// negative mass: background event
// positive mass: signal event
Double_t GenerateEvent(Double_t bgr, // relative fraction of background
Double_t mass, // peak position
Double_t gamma) // peak width
{
if(rnd->Rndm()>bgr) {
// generate signal event
// with positive mass
do {
do {
t=rnd->Rndm();
} while(t>=1.0);
t=TMath::Tan((t-0.5)*TMath::Pi())*gamma+mass;
} while(t<=0.0);
return t;
} else {
// generate background event
// generate events following a power-law distribution
// f(E) = K * TMath::power((E0+E),N0)
static Double_t const E0=2.4;
static Double_t const N0=2.9;
do {
do {
t=rnd->Rndm();
} while(t>=1.0);
// the mass is returned negative
// In our example a convenient way to indicate it is a background event.
t= -(TMath::Power(1.-t,1./(1.-N0))-1.0)*E0;
} while(t>=0.0);
return t;
}
}
// smear the event to detector level
// input:
// mass on generator level (mTrue>0 !)
// output:
// mass on detector level
Double_t DetectorEvent(Double_t mTrue) {
// smear by double-gaussian
static Double_t frac=0.1;
static Double_t wideBias=0.03;
static Double_t wideSigma=0.5;
static Double_t smallBias=0.0;
static Double_t smallSigma=0.1;
if(rnd->Rndm()>frac) {
return rnd->Gaus(mTrue+smallBias,smallSigma);
} else {
return rnd->Gaus(mTrue+wideBias,wideSigma);
}
}
int testUnfold2()
{
// switch on histogram errors
// random generator
rnd=new TRandom3();
// data and MC luminosity, cross-section
Double_t const luminosityData=100000;
Double_t const luminosityMC=1000000;
Double_t const crossSection=1.0;
Int_t const nDet=250;
Int_t const nGen=100;
Double_t const xminDet=0.0;
Double_t const xmaxDet=10.0;
Double_t const xminGen=0.0;
Double_t const xmaxGen=10.0;
//============================================
// generate MC distribution
//
TH1D *histMgenMC=new TH1D("MgenMC",";mass(gen)",nGen,xminGen,xmaxGen);
TH1D *histMdetMC=new TH1D("MdetMC",";mass(det)",nDet,xminDet,xmaxDet);
TH2D *histMdetGenMC=new TH2D("MdetgenMC",";mass(det);mass(gen)",nDet,xminDet,xmaxDet,
nGen,xminGen,xmaxGen);
Int_t neventMC=rnd->Poisson(luminosityMC*crossSection);
for(Int_t i=0;i<neventMC;i++) {
Double_t mGen=GenerateEvent(0.3, // relative fraction of background
4.0, // peak position in MC
0.2); // peak width in MC
Double_t mDet=DetectorEvent(TMath::Abs(mGen));
// the generated mass is negative for background
// and positive for signal
// so it will be filled in the underflow bin
// this is very convenient for the unfolding:
// the unfolded result will contain the number of background
// events in the underflow bin
// generated MC distribution (for comparison only)
histMgenMC->Fill(mGen,luminosityData/luminosityMC);
// reconstructed MC distribution (for comparison only)
histMdetMC->Fill(mDet,luminosityData/luminosityMC);
// matrix describing how the generator input migrates to the
// reconstructed level. Unfolding input.
// NOTE on underflow/overflow bins:
// (1) the detector level under/overflow bins are used for
// normalisation ("efficiency" correction)
// in our toy example, these bins are populated from tails
// of the initial MC distribution.
// (2) the generator level underflow/overflow bins are
// unfolded. In this example:
// underflow bin: background events reconstructed in the detector
// overflow bin: signal events generated at masses > xmaxDet
// for the unfolded result these bins will be filled
// -> the background normalisation will be contained in the underflow bin
histMdetGenMC->Fill(mDet,mGen,luminosityData/luminosityMC);
}
//============================================
// generate data distribution
//
TH1D *histMgenData=new TH1D("MgenData",";mass(gen)",nGen,xminGen,xmaxGen);
TH1D *histMdetData=new TH1D("MdetData",";mass(det)",nDet,xminDet,xmaxDet);
Int_t neventData=rnd->Poisson(luminosityData*crossSection);
for(Int_t i=0;i<neventData;i++) {
Double_t mGen=GenerateEvent(0.4, // relative fraction of background
3.8, // peak position
0.15); // peak width
Double_t mDet=DetectorEvent(TMath::Abs(mGen));
// generated data mass for comparison plots
// for real data, we do not have this histogram
histMgenData->Fill(mGen);
// reconstructed mass, unfolding input
histMdetData->Fill(mDet);
}
//=========================================================================
// set up the unfolding
TUnfold unfold(histMdetGenMC,TUnfold::kHistMapOutputVert,
// regularisation
//----------------
// the regularisation is done on the curvature (2nd derivative) of
// the output distribution
//
// One has to exclude the bins near the peak of the Breit-Wigner,
// because there the curvature is high
// (and the regularisation eventually could enforce a small
// curvature, thus biasing result)
//
// in real life, the parameters below would have to be optimized,
// depending on the data peak position and width
// Or maybe one finds a different regularisation scheme... this is
// just an example...
Double_t estimatedPeakPosition=3.8;
Int_t nPeek=3;
// calculate bin number corresponding to estimated peak position
Int_t iPeek=(Int_t)(nGen*(estimatedPeakPosition-xminGen)/(xmaxGen-xminGen)
// offset 1.5
// accounts for start bin 1
// and rounding errors +0.5
+1.5);
// regularize output bins 1..iPeek-nPeek
unfold.RegularizeBins(1,1,iPeek-nPeek,regMode);
// regularize output bins iPeek+nPeek..nGen
unfold.RegularizeBins(iPeek+nPeek,1,nGen-(iPeek+nPeek),regMode);
// unfolding
//-----------
// set input distribution and bias scale (=0)
if(unfold.SetInput(histMdetData,0.0)>=10000) {
std::cout<<"Unfolding result may be wrong\n";
}
// do the unfolding here
Double_t tauMin=0.0;
Double_t tauMax=0.0;
Int_t nScan=30;
Int_t iBest;
TSpline *logTauX,*logTauY;
TGraph *lCurve;
// this method scans the parameter tau and finds the kink in the L curve
// finally, the unfolding is done for the "best" choice of tau
iBest=unfold.ScanLcurve(nScan,tauMin,tauMax,&lCurve,&logTauX,&logTauY);
std::cout<<"tau="<<unfold.GetTau()<<"\n";
std::cout<<"chi**2="<<unfold.GetChi2A()<<"+"<<unfold.GetChi2L()
<<" / "<<unfold.GetNdf()<<"\n";
// save point corresponding to the kink in the L curve as TGraph
Double_t t[1],x[1],y[1];
logTauX->GetKnot(iBest,t[0],x[0]);
logTauY->GetKnot(iBest,t[0],y[0]);
TGraph *bestLcurve=new TGraph(1,x,y);
TGraph *bestLogTauX=new TGraph(1,t,x);
//============================================================
// extract unfolding results into histograms
// set up a bin map, excluding underflow and overflow bins
// the binMap relates the the output of the unfolding to the final
// histogram bins
Int_t *binMap=new Int_t[nGen+2];
for(Int_t i=1;i<=nGen;i++) binMap[i]=i;
binMap[0]=-1;
binMap[nGen+1]=-1;
TH1D *histMunfold=new TH1D("Unfolded",";mass(gen)",nGen,xminGen,xmaxGen);
unfold.GetOutput(histMunfold,binMap);
TH1D *histMdetFold=new TH1D("FoldedBack","mass(det)",nDet,xminDet,xmaxDet);
unfold.GetFoldedOutput(histMdetFold);
// store global correlation coefficients
TH1D *histRhoi=new TH1D("rho_I","mass",nGen,xminGen,xmaxGen);
unfold.GetRhoI(histRhoi,binMap);
delete[] binMap;
binMap=0;
//=====================================================================
// plot some histograms
// produce some plots
output.Divide(3,2);
// Show the matrix which connects input and output
// There are overflow bins at the bottom, not shown in the plot
// These contain the background shape.
// The overflow bins to the left and right contain
// events which are not reconstructed. These are necessary for proper MC
// normalisation
output.cd(1);
histMdetGenMC->Draw("BOX");
// draw generator-level distribution:
// data (red) [for real data this is not available]
// MC input (black) [with completely wrong peak position and shape]
// unfolded data (blue)
output.cd(2);
histMunfold->SetLineColor(kBlue);
histMunfold->Draw();
histMgenData->SetLineColor(kRed);
histMgenData->Draw("SAME");
histMgenMC->Draw("SAME HIST");
// show detector level distributions
// data (red)
// MC (black)
// unfolded data (blue)
output.cd(3);
histMdetFold->SetLineColor(kBlue);
histMdetFold->Draw();
histMdetData->SetLineColor(kRed);
histMdetData->Draw("SAME");
histMdetMC->Draw("SAME HIST");
// show correlation coefficients
// all bins outside the peak are found to be highly correlated
// But they are compatible with zero anyway
// If the peak shape is fitted,
// these correlations have to be taken into account, see example
output.cd(4);
histRhoi->Draw();
// show rhoi_max(tau) distribution
output.cd(5);
logTauX->Draw();
bestLogTauX->SetMarkerColor(kRed);
bestLogTauX->Draw("*");
output.cd(6);
lCurve->Draw("AL");
bestLcurve->SetMarkerColor(kRed);
bestLcurve->Draw("*");
output.SaveAs("testUnfold2.ps");
return 0;
}
int Int_t
Definition RtypesCore.h:45
double Double_t
Definition RtypesCore.h:59
@ kRed
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:40
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:38
The Canvas class.
Definition TCanvas.h:23
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
virtual void Draw(Option_t *chopt="")
Draw this graph with its current attributes.
Definition TGraph.cxx:769
1-D histogram with a double per channel (see TH1 documentation)}
Definition TH1.h:618
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3350
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6663
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition TH1.cxx:3073
2-D histogram with a double per channel (see TH1 documentation)}
Definition TH2.h:292
Int_t Fill(Double_t)
Invalid Fill method.
Definition TH2.cxx:294
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
Definition TPad.cxx:1177
Random number generator class based on M.
Definition TRandom3.h:27
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition TRandom.cxx:274
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:402
virtual Double_t Rndm()
Machine independent random number generator.
Definition TRandom.cxx:552
Base class for spline implementation containing the Draw/Paint methods.
Definition TSpline.h:31
virtual void Draw(Option_t *option="")
Draw this function with its current attributes.
Definition TSpline.cxx:101
virtual void GetKnot(Int_t i, Double_t &x, Double_t &y) const =0
An algorithm to unfold distributions from detector to truth level.
Definition TUnfold.h:103
ERegMode
choice of regularisation scheme
Definition TUnfold.h:119
@ kRegModeNone
no regularisation, or defined later by RegularizeXXX() methods
Definition TUnfold.h:122
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
Definition TUnfold.h:131
@ kHistMapOutputVert
truth level on y-axis of the response matrix
Definition TUnfold.h:145
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Definition TMath.h:735
constexpr Double_t Pi()
Definition TMath.h:37
Double_t Tan(Double_t)
Definition TMath.h:647
Short_t Abs(Short_t d)
Definition TMathBase.h:120
static void output(int code)
Definition gifencode.c:226

Version 17.6, in parallel to changes in TUnfold

History:

  • Version 17.5, in parallel to changes in TUnfold
  • Version 17.4, in parallel to changes in TUnfold
  • Version 17.3, in parallel to changes in TUnfold
  • Version 17.2, in parallel to changes in TUnfold
  • Version 17.1, in parallel to changes in TUnfold
  • Version 17.0, updated for changed methods in TUnfold
  • Version 16.1, parallel to changes in TUnfold
  • Version 16.0, parallel to changes in TUnfold
  • Version 15, with automatic L-curve scan, simplified example
  • Version 14, with changes in TUnfoldSys.cxx
  • Version 13, with changes to TUnfold.C
  • Version 12, with improvements to TUnfold.cxx
  • Version 11, print chi**2 and number of degrees of freedom
  • Version 10, with bug-fix in TUnfold.cxx
  • Version 9, with bug-fix in TUnfold.cxx, TUnfold.h
  • Version 8, with bug-fix in TUnfold.cxx, TUnfold.h
  • Version 7, with bug-fix in TUnfold.cxx, TUnfold.h
  • Version 6a, fix problem with dynamic array allocation under windows
  • Version 6, re-include class MyUnfold in the example
  • Version 5, move class MyUnfold to separate files
  • Version 4, with bug-fix in TUnfold.C
  • Version 3, with bug-fix in TUnfold.C
  • Version 2, with changed ScanLcurve() arguments
  • Version 1, remove L curve analysis, use ScanLcurve() method instead
  • Version 0, L curve analysis included here

This file is part of TUnfold.

TUnfold is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

TUnfold is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with TUnfold. If not, see http://www.gnu.org/licenses/.

Author
Stefan Schmitt DESY, 14.10.2008

Definition in file testUnfold2.C.