wrt. the vector
You might wonder what is so special about this objective which is quadratic in the unknowns, that can not be done by Minuit/Fumili . Well, we have in addition the following boundary conditions on :
Not all these constraints have to be defined . Our example will only use , and Still, this could be handled by a general non-linear minimizer like Minuit by introducing so-called "slack" variables . However, quadp is tailored to objective functions not more complex than being quadratic . This allows usage of solving techniques which are even stable for problems involving for instance 500 variables, 100 inequality conditions and 50 equality conditions .
Enough said about quadratic programming, let's return to our example . Suppose, after a long day of doing physics, you have a look at your investments and realize that an early retirement is not possible, given the returns of your stocks . So what now ? ROOT to the rescue ...
In 1990 Harry Markowitz was awarded the Nobel prize for economics: " his work provided new tools
for weighing the risks and rewards of different investments and for valuing corporate stocks and bonds" . In plain English, he developed the tools to balance greed and fear, we want the maximum return with the minimum amount of risk. Our stock portfolio should be at the "Efficient Frontier". To quantify better the risk we are willing to take, we define a utility function . It describes as a function of our total assets , our "satisfaction" . A common choice is (the reason for the exponent will be clear later) . The parameter is the risk-aversion factor . For small values of the satisfaction is small for small values of ; by increasing the satisfaction can still be increased significantly . For large values of , increases rapidly to 1, there is no increase in satisfaction for additional dollars earned .
Suppose we have for nrStocks the historical daily returns . Define a vector of length of , which contains the fraction of our money invested in each stock . We can calculate the average daily return of our portfolio and its variance using the portfolio covariance Covar :
Assuming that the daily returns have a Normal distribution, , so will with mean and variance
Its value is maximised by maximising under the condition , meaning we want all our money invested and , we can not "short" a stock
We calculate the optimal portfolio for 2.0 and 10.0 .
stock daily daily w1 w2
symb return sdv
GE : 1.001 0.022 0.000 0.134
SUNW : 1.004 0.047 0.676 0.145
QCOM : 1.001 0.039 0.000 0.000
BRCM : 1.003 0.056 0.179 0.035
TYC : 1.001 0.042 0.145 0.069
IBM : 1.001 0.023 0.000 0.096
AMAT : 1.001 0.040 0.000 0.000
C : 1.000 0.023 0.000 0.000
PFE : 1.000 0.019 0.000 0.424
HD : 1.001 0.029 0.000 0.098
const Int_t nrStocks = 10;
static const Char_t *stocks[] =
{"GE","SUNW","QCOM","BRCM","TYC","IBM","AMAT","C","PFE","HD"};
class TStockDaily {
public:
TStockDaily() {
fDate = fVol = fOpen = fHigh = fLow = fClose = fCloseAdj = 0;
}
virtual ~TStockDaily() {}
};
}
{
for (
Int_t i = 0; i < nrEntries; i++) {
if (
data->fDate >= sDay &&
data->fDate <= eDay)
closeAdj[i] =
data->fCloseAdj/100.;
}
for (
Int_t i = 1; i < nrEntries; i++)
(*
r)[i-1] = closeAdj[i]/closeAdj[i-1];
}
#ifndef __MAKECINT__
{
const Int_t nrVar = nrStocks;
const Int_t nrInEqual = 0;
TQpDataDens *prob = (
TQpDataDens *)qp->
MakeData(
c,Q,xlo,ixlo,xup,ixup,A,
b,C,clo,iclo,cup,icup);
delete qp; delete prob; delete vars; delete resid; delete s;
if (status != 0) {
cout << "Could not solve this problem." <<endl;
}
return weight;
}
#endif
void portfolio()
{
const Int_t sDay = 20000809;
const Int_t eDay = 20040602;
const char *fname = "stock.root";
} else {
printf("accessing %s file from http://root.cern.ch/files\n",fname);
}
for (
Int_t i = 0; i < nrStocks; i++) {
data[i] = StockReturn(
f,symbol,sDay,eDay);
}
for (
Int_t i = 0; i < nrStocks; i++)
r[i] =
data[i].GetSum()/nrData;
for (
Int_t i = 0; i < nrStocks; i++) {
for (
Int_t j = 0; j <= i; j++) {
for (
Int_t k = 0; k < nrData; k++) {
}
Covar(i,j) = Covar(j,i) =
sum/nrData;
}
}
const TVectorD weight1 = OptimalInvest(2.0,
r,Covar);
const TVectorD weight2 = OptimalInvest(10.,
r,Covar);
cout << "stock daily daily w1 w2" <<endl;
cout << "symb return sdv " <<endl;
for (
Int_t i = 0; i < nrStocks; i++)
printf(
"%s\t: %.3f %.3f %.3f %.3f\n",stocks[i],
r[i],
TMath::Sqrt(Covar[i][i]),weight1[i],weight2[i]);
TF1 *
f1 =
new TF1(
"f1",RiskProfile,0,2.5,1);
TF1 *f2 =
new TF1(
"f2",RiskProfile,0,2.5,1);
legend1->
AddEntry(f2,
"1-exp(-10.*x)",
"l");
TH1F *
h1 =
new TH1F(
"h1",
"Portfolio Distribution",nrStocks,0,0);
TH1F *h2 =
new TH1F(
"h2",
"Portfolio Distribution",nrStocks,0,0);
for (
Int_t i = 0; i < nrStocks; i++) {
h1->
Fill(stocks[i],weight1[i]);
h2->
Fill(stocks[i],weight2[i]);
}
h2->
Draw(
"BAR2SAME HIST");
}
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
TVectorT< Double_t > TVectorD
Array of floats (32 bits per element).
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
A TTree is a list of TBranches.
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all leaves of entry and return total number of bytes read.
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
void Draw(Option_t *option="") override
Draw this function with its current attributes.
virtual void SetParameter(Int_t param, Double_t value)
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Derived class of TQpSolverBase implementing Gondzio-correction version of Mehrotra's original predict...
Int_t Solve(TQpDataBase *prob, TQpVar *iterate, TQpResidual *resid) override
Solve the quadratic programming problem as formulated through prob, store the final solution in itera...
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
virtual void SetXTitle(const char *title)
virtual void SetMaximum(Double_t maximum=-1111)
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
virtual void SetMinimum(Double_t minimum=-1111)
virtual void SetYTitle(const char *title)
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
void Draw(Option_t *option="") override
Draw this legend with its current attributes.
Data for the dense QP formulation.
dense matrix problem formulation
TQpVar * MakeVariables(const TQpDataBase *data) override
Setup the variables.
virtual TQpDataBase * MakeData(Double_t *c, Double_t *Q, Double_t *xlo, Bool_t *ixlo, Double_t *xup, Bool_t *ixup, Double_t *A, Double_t *bA, Double_t *C, Double_t *clo, Bool_t *iclo, Double_t *cup, Bool_t *icup)
Setup the data.
TQpResidual * MakeResiduals(const TQpDataBase *data) override
Setup the residuals.
The Residuals class calculates and stores the quantities that appear on the right-hand side of the li...
Class containing the variables for the general QP formulation.
static const TString & GetTutorialDir()
Get the tutorials directory in the installation. Static utility function.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
virtual TBranch * GetBranch(const char *name)
Return pointer to the branch with the given name in this tree or its friends.
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=nullptr)
Change branch address, dealing with clone trees properly.
virtual Long64_t GetEntries() const
constexpr Double_t C()
Velocity of light in .
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
Double_t Sqrt(Double_t x)
Returns the square root of x.
static uint64_t sum(uint64_t i)