231 for(
Int_t i=0;i<2;i++) {
372 Fatal(
"Unfold",
"epsilon#Eepsilon has dimension %d != 1",
484 "epsilon#fDXDtauSquared has dimension %d != 1",
533 Warning(
"DoUnfold",
"rank of output covariance is %d expect %d",
621 if(
a->GetNcols()!=
b->GetNrows()) {
622 Fatal(
"MultiplyMSparseMSparse",
623 "inconsistent matrix col/ matrix row %d !=%d",
624 a->GetNcols(),
b->GetNrows());
696 if(
a->GetNrows() !=
b->GetNrows()) {
697 Fatal(
"MultiplyMSparseTranspMSparse",
698 "inconsistent matrix row numbers %d!=%d",
699 a->GetNrows(),
b->GetNrows());
713 typedef std::map<Int_t, MMatrixRow_t >
MMatrix_t;
735 n += (*irow).second.size();
777 if(
a->GetNcols()!=
b->GetNrows()) {
778 Fatal(
"MultiplyMSparseM",
"inconsistent matrix col /matrix row %d!=%d",
779 a->GetNcols(),
b->GetNrows());
838 (
v && ((m1->
GetNcols()!=
v->GetNrows())||(
v->GetNcols()!=1)))) {
840 Fatal(
"MultiplyMSparseMSparseTranspVector",
841 "matrix cols/vector rows %d!=%d!=%d or vector rows %d!=1\n",
844 Fatal(
"MultiplyMSparseMSparseTranspVector",
941 if((
dest->GetNrows()!=
src->GetNrows())||
942 (
dest->GetNcols()!=
src->GetNcols())) {
943 Fatal(
"AddMSparse",
"inconsistent matrix rows %d!=%d OR cols %d!=%d",
944 src->GetNrows(),
dest->GetNrows(),
src->GetNcols(),
dest->GetNcols());
951 for(
Int_t row=0;row<
dest->GetNrows();row++) {
972 Fatal(
"AddMSparse",
"Nan detected %d %d %d",
1013 Fatal(
"InvertMSparseSymmPos",
"inconsistent matrix row/col %d!=%d",
1039 Fatal(
"InvertMSparseSymmPos",
1040 "Matrix has %d negative elements on the diagonal",
nError);
1098#ifdef CONDITION_BLOCK_PART
1101 for(
int i=
inc;i<nn;i++) {
1118 std::cout<<
" "<<i<<
" "<<swap[i]<<
" "<<
swapBack[i]<<
"\n";
1120 std::cout<<
"after sorting\n";
1122 if(i==
iDiagonal) std::cout<<
"iDiagonal="<<i<<
"\n";
1123 if(i==
iBlock) std::cout<<
"iBlock="<<i<<
"\n";
1124 std::cout<<
" "<<swap[i]<<
" "<<
aII(swap[i])<<
"\n";
1148 Fatal(
"InvertMSparseSymmPos",
"sparse matrix analysis failed %d %d %d %d %d",
1154 Info(
"InvertMSparseSymmPos",
"iDiagonal=%d iBlock=%d nRow=%d",
1225 Fatal(
"InvertMSparseSymmPos",
1226 "diagonal part 1 has rank %d != %d, matrix can not be inverted",
1254 Fatal(
"InvertMSparseSymmPos",
1255 "diagonal part 2 has rank %d != %d, matrix can not be inverted",
1308#ifndef FORCE_EIGENVALUE_DECOMPOSITION
1367 for(
Int_t k=0;k<i;k++) {
1382 std::cout<<
"dmin,dmax: "<<
dmin<<
" "<<
dmax<<
"\n";
1391 cinv(i,i)=1./
c(i,i);
1396 for(
Int_t k=i+1;k<
j;k++) {
1489 for(
Int_t iF=0;iF<
Finv->GetNrows();iF++) {
1504 Fatal(
"InvertMSparseSymmPos",
1505 "non-trivial part has rank < %d, matrix can not be inverted",
1512 Info(
"InvertMSparseSymmPos",
1513 "cholesky-decomposition failed, try eigenvalue analysis");
1515 std::cout<<
"nEV="<<
nEV<<
" iDiagonal="<<
iDiagonal<<
"\n";
1526 if((i<0)||(
j<0)||(i>=
nEV)||(
j>=
nEV)) {
1527 std::cout<<
" error "<<
nEV<<
" "<<i<<
" "<<
j<<
"\n";
1531 Fatal(
"InvertMSparseSymmPos",
1532 "non-finite number detected element %d %d\n",
1542 std::cout<<
"Eigenvalues\n";
1547 if(
Eigen.GetEigenValues()(0)<0.0) {
1549 }
else if(
Eigen.GetEigenValues()(0)>0.0) {
1557 Error(
"InvertMSparseSymmPos",
1558 "Largest Eigenvalue is negative %f",
1559 Eigen.GetEigenValues()(0));
1561 Error(
"InvertMSparseSymmPos",
1562 "Some Eigenvalues are negative (EV%d/EV0=%g epsilon=%g)",
1641 for(
Int_t i=0;i<
a.GetNrows();i++) {
1646 std::cout<<
"Ar is not symmetric Ar("<<i<<
","<<
j<<
")="<<
ar(i,
j)
1647 <<
" Ar("<<
j<<
","<<i<<
")="<<
ar(
j,i)<<
"\n";
1652 std::cout<<
"ArA is not equal A ArA("<<i<<
","<<
j<<
")="<<
ara(i,
j)
1653 <<
" A("<<i<<
","<<
j<<
")="<<
a(i,
j)<<
"\n";
1658 std::cout<<
"rAr is not equal r rAr("<<i<<
","<<
j<<
")="<<
rar(i,
j)
1659 <<
" r("<<i<<
","<<
j<<
")="<<
R(i,
j)<<
"\n";
1665 std::cout<<
"Matrix is not positive\n";
1838 Info(
"TUnfold",
"underflow and overflow bin "
1839 "do not depend on the input data");
1841 Warning(
"TUnfold",
"%d output bins "
1843 static_cast<const char *
>(
binlist));
1872 Info(
"TUnfold",
"%d input bins and %d output bins (includes 2 underflow/overflow bins)",
ny,
nx);
1874 Info(
"TUnfold",
"%d input bins and %d output bins (includes 1 underflow bin)",
ny,
nx);
1876 Info(
"TUnfold",
"%d input bins and %d output bins (includes 1 overflow bin)",
ny,
nx);
1878 Info(
"TUnfold",
"%d input bins and %d output bins",
ny,
nx);
1882 Error(
"TUnfold",
"too few (ny=%d) input bins for nx=%d output bins",
ny,
nx);
1884 Warning(
"TUnfold",
"too few (ny=%d) input bins for nx=%d output bins",
ny,
nx);
1896 "%d regularisation conditions have been skipped",
nError);
1899 "One regularisation condition has been skipped");
2185 Error(
"RegularizeBins",
"regmode = %d is not valid",
regmode);
2374 if(
iy==
jy)
continue;
2387 "inverse of input covariance is taken from user input");
2409 "input covariance has elements C(X,Y)!=0 where V(X)==0");
2433 (*fY) (i, 0) =
input->GetBinContent(i + 1);
2439 for (
Int_t i = 0; i <
mAtV->GetNrows();i++) {
2440 if(
mAtV->GetRowIndexArray()[i]==
2441 mAtV->GetRowIndexArray()[i+1]) {
2447 Warning(
"SetInput",
"%d/%d input bins have zero error,"
2448 " 1/error set to %lf.",
2451 Warning(
"SetInput",
"One input bin has zero error,"
2457 Warning(
"SetInput",
"%d/%d input bins have zero error,"
2460 Warning(
"SetInput",
"One input bin has zero error,"
2461 " and is ignored.");
2470 for (
Int_t col = 0; col <
mAtV->GetNrows();col++) {
2471 if(
mAtV->GetRowIndexArray()[col]==
2472 mAtV->GetRowIndexArray()[col+1]) {
2489 Error(
"SetInput",
"%d/%d output bins are not constrained by any data.",
2492 Error(
"SetInput",
"One output bins is not constrained by any data.");
2554 typedef std::map<Double_t,std::pair<Double_t,Double_t> >
XYtau_t;
2589 Error(
"ScanLcurve",
"too few input bins, NDF<=0 %d",
GetNdf());
2594 Info(
"ScanLcurve",
"logtau=-Infinity X=%lf Y=%lf",
x0,
y0);
2596 Fatal(
"ScanLcurve",
"problem (too few input bins?) X=%f",
x0);
2599 Fatal(
"ScanLcurve",
"problem (missing regularisation?) Y=%f",
y0);
2608 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2612 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2627 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2631 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2645 (
curve.size()<2))) {
2649 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2653 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2664 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2667 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2674 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2677 Info(
"ScanLcurve",
"logtau=%lf X=%lf Y=%lf",
2696 const std::pair<Double_t, Double_t> &
xy0 = (*i0).second;
2697 const std::pair<Double_t, Double_t> &
xy1 = (*i1).second;
2703 logTau = 0.5 * ((*i0).first + (*i1).first);
2709 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2736 lXi[
n] = (*i).second.first;
2737 lYi[
n] = (*i).second.second;
2738 lTi[
n] = (*i).first;
2745 for(
Int_t i=0;i<
n-1;i++) {
2843 Fatal(
"ScanLcurve",
"problem (missing regularisation?) X=%f Y=%f",
2846 Info(
"ScanLcurve",
"Result logtau=%lf X=%lf Y=%lf",
2857 if(!
curve.empty()) {
2866 x[
n] = (*i).second.first;
2867 y[
n] = (*i).second.second;
2868 logT[
n] = (*i).first;
2873 (*lCurve)->SetTitle(
"L curve");
2931 out->GetBinContent(
dest));
2964 if(
destI<0)
continue;
2966 out->SetBinContent(
destI, (*
fAx) (i, 0)+ out->GetBinContent(
destI));
3042 if(
destI<0)
continue;
3044 out->SetBinContent(
destI, (*
fY) (i, 0)+out->GetBinContent(
destI));
3052 out->SetBinError(
destI,
e);
3072 Warning(
"GetInputInverseEmatrix",
"input covariance matrix has rank %d expect %d",
3076 Error(
"GetInputInverseEmatrix",
"number of parameters %d > %d (rank of input covariance). Problem can not be solved",
GetNpar(),
rank);
3077 }
else if(
fNdf==0) {
3078 Warning(
"GetInputInverseEmatrix",
"number of parameters %d = input rank %d. Problem is ill posed",
GetNpar(),
rank);
3087 for(
int i=0;i<=out->GetNbinsX()+1;i++) {
3088 for(
int j=0;
j<=out->GetNbinsY()+1;
j++) {
3089 out->SetBinContent(i,
j,0.);
3275 std::map<Int_t,Double_t>
e2;
3324 for (std::map<Int_t, Double_t>::const_iterator i =
e2.
begin(); i !=
e2.
end(); ++i) {
3436 if((
e[i]>0.0)&&(
e[
j]>0.0)) {
3439 rhoij->SetBinContent(i,
j,0.0);
3577 if(
destI<0)
continue;
3587 if(
destJ<0)
continue;
3597 Warning(
"GetRhoIFormMatrix",
"Covariance matrix has rank %d expect %d",
3647 nxyz[0]=
h->GetNbinsX()+1;
3648 nxyz[1]=
h->GetNbinsY()+1;
3649 nxyz[2]=
h->GetNbinsZ()+1;
3650 for(
int i=
h->GetDimension();i<3;i++)
nxyz[i]=0;
3652 for(
int i=0;i<3;i++)
ixyz[i]=0;
3657 h->SetBinContent(
ibin,
x);
3658 h->SetBinError(
ibin,0.0);
3659 for(
Int_t i=0;i<3;i++) {
#define R(a, b, c, d, e, f, g, h, i)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t dest
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint xy
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t src
TMatrixTSparse< Double_t > TMatrixDSparse
TMatrixT< Double_t > TMatrixD
const_iterator begin() const
const_iterator end() const
void Set(Int_t n) override
Set size of this array to n doubles.
const Double_t * GetArray() const
void Set(Int_t n) override
Set size of this array to n ints.
A TGraph is an object made of two arrays X and Y with npoints each.
TH1 is the base class of all histogram classes in ROOT.
Service class for 2-D histogram classes.
void SetBinContent(Int_t bin, Double_t content) override
Set bin content.
TMatrixTBase< Element > & SetMatrixArray(const Element *data, Option_t *="") override
Copy array data to matrix .
const Int_t * GetRowIndexArray() const override
const Int_t * GetColIndexArray() const override
const Element * GetMatrixArray() const override
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Class to create third splines to interpolate knots Arbitrary conditions can be introduced for first a...
Base class for spline implementation containing the Draw/Paint methods.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
An algorithm to unfold distributions from detector to truth level.
TArrayI fHistToX
mapping of histogram bins to matrix indices
TMatrixDSparse * fE
matrix E
TMatrixDSparse * fEinv
matrix E^(-1)
virtual Double_t GetLcurveY(void) const
Get value on y-axis of L-curve determined in recent unfolding.
TMatrixDSparse * fAx
result x folded back A*x
TMatrixDSparse * MultiplyMSparseM(const TMatrixDSparse *a, const TMatrixD *b) const
Multiply sparse matrix and a non-sparse matrix.
virtual Double_t DoUnfold(void)
Core unfolding algorithm.
Double_t fChi2A
chi**2 contribution from (y-Ax)Vyy-1(y-Ax)
TMatrixD * fX0
bias vector x0
void GetBias(TH1 *bias, const Int_t *binMap=nullptr) const
Get bias vector including bias scale.
TMatrixDSparse * MultiplyMSparseTranspMSparse(const TMatrixDSparse *a, const TMatrixDSparse *b) const
Multiply a transposed Sparse matrix with another sparse matrix,.
TMatrixDSparse * MultiplyMSparseMSparseTranspVector(const TMatrixDSparse *m1, const TMatrixDSparse *m2, const TMatrixTBase< Double_t > *v) const
Calculate a sparse matrix product where the diagonal matrix V is given by a vector.
TMatrixDSparse * CreateSparseMatrix(Int_t nrow, Int_t ncol, Int_t nele, Int_t *row, Int_t *col, Double_t *data) const
Create a sparse matrix, given the nonzero elements.
Int_t RegularizeSize(int bin, Double_t scale=1.0)
Add a regularisation condition on the magnitude of a truth bin.
Double_t fEpsMatrix
machine accuracy used to determine matrix rank after eigenvalue analysis
void GetProbabilityMatrix(TH2 *A, EHistMap histmap) const
Get matrix of probabilities.
Double_t GetChi2L(void) const
Get contribution determined in recent unfolding.
TMatrixDSparse * fVxx
covariance matrix Vxx
Int_t GetNy(void) const
returns the number of measurement bins
virtual TString GetOutputBinName(Int_t iBinX) const
Get bin name of an output bin.
Double_t fBiasScale
scale factor for the bias
virtual Int_t ScanLcurve(Int_t nPoint, Double_t tauMin, Double_t tauMax, TGraph **lCurve, TSpline **logTauX=nullptr, TSpline **logTauY=nullptr, TSpline **logTauCurvature=nullptr)
Scan the L curve, determine tau and unfold at the final value of tau.
Double_t fRhoAvg
average global correlation coefficient
TMatrixDSparse * fDXDtauSquared
derivative of the result wrt tau squared
static void DeleteMatrix(TMatrixD **m)
delete matrix and invalidate pointer
void ClearHistogram(TH1 *h, Double_t x=0.) const
Initialize bin contents and bin errors for a given histogram.
Int_t RegularizeDerivative(int left_bin, int right_bin, Double_t scale=1.0)
Add a regularisation condition on the difference of two truth bin.
Int_t GetNx(void) const
returns internal number of output (truth) matrix rows
static const char * GetTUnfoldVersion(void)
Return a string describing the TUnfold version.
void SetConstraint(EConstraint constraint)
Set type of area constraint.
void GetFoldedOutput(TH1 *folded, const Int_t *binMap=nullptr) const
Get unfolding result on detector level.
Int_t RegularizeBins(int start, int step, int nbin, ERegMode regmode)
Add regularisation conditions for a group of bins.
Bool_t AddRegularisationCondition(Int_t i0, Double_t f0, Int_t i1=-1, Double_t f1=0., Int_t i2=-1, Double_t f2=0.)
Add a row of regularisation conditions to the matrix L.
Int_t RegularizeCurvature(int left_bin, int center_bin, int right_bin, Double_t scale_left=1.0, Double_t scale_right=1.0)
Add a regularisation condition on the curvature of three truth bin.
void SetBias(const TH1 *bias)
Set bias vector.
void GetL(TH2 *l) const
Get matrix of regularisation conditions.
ERegMode fRegMode
type of regularisation
Int_t GetNr(void) const
Get number of regularisation conditions.
TMatrixDSparse * fVxxInv
inverse of covariance matrix Vxx-1
TMatrixD * fX
unfolding result x
EConstraint
type of extra constraint
@ kEConstraintNone
use no extra constraint
virtual Double_t GetLcurveX(void) const
Get value on x-axis of L-curve determined in recent unfolding.
Double_t GetRhoI(TH1 *rhoi, const Int_t *binMap=nullptr, TH2 *invEmat=nullptr) const
Get global correlation coefficients, possibly cumulated over several bins.
TMatrixDSparse * fVyy
covariance matrix Vyy corresponding to y
Int_t fNdf
number of degrees of freedom
TArrayD fSumOverY
truth vector calculated from the non-normalized response matrix
ERegMode
choice of regularisation scheme
@ kRegModeNone
no regularisation, or defined later by RegularizeXXX() methods
@ kRegModeDerivative
regularize the 1st derivative of the output distribution
@ kRegModeSize
regularise the amplitude of the output distribution
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
@ kRegModeMixed
mixed regularisation pattern
void GetInput(TH1 *inputData, const Int_t *binMap=nullptr) const
Input vector of measurements.
void SetEpsMatrix(Double_t eps)
set numerical accuracy for Eigenvalue analysis when inverting matrices with rank problems
void GetOutput(TH1 *output, const Int_t *binMap=nullptr) const
Get output distribution, possibly cumulated over several bins.
void GetRhoIJ(TH2 *rhoij, const Int_t *binMap=nullptr) const
Get correlation coefficients, possibly cumulated over several bins.
void ErrorMatrixToHist(TH2 *ematrix, const TMatrixDSparse *emat, const Int_t *binMap, Bool_t doClear) const
Add up an error matrix, also respecting the bin mapping.
TArrayI fXToHist
mapping of matrix indices to histogram bins
TMatrixDSparse * fDXDY
derivative of the result wrt dx/dy
TMatrixD * fY
input (measured) data y
TMatrixDSparse * InvertMSparseSymmPos(const TMatrixDSparse *A, Int_t *rank) const
Get the inverse or pseudo-inverse of a positive, sparse matrix.
TMatrixDSparse * fVyyInv
inverse of the input covariance matrix Vyy-1
Double_t fLXsquared
chi**2 contribution from (x-s*x0)TLTL(x-s*x0)
TMatrixDSparse * fDXDAM[2]
matrix contribution to the of derivative dx_k/dA_ij
Double_t fTauSquared
regularisation parameter tau squared
Int_t GetNpar(void) const
Get number of truth parameters determined in recent unfolding.
virtual void ClearResults(void)
Reset all results.
Double_t fRhoMax
maximum global correlation coefficient
void GetEmatrix(TH2 *ematrix, const Int_t *binMap=nullptr) const
Get output covariance matrix, possibly cumulated over several bins.
TMatrixDSparse * MultiplyMSparseMSparse(const TMatrixDSparse *a, const TMatrixDSparse *b) const
Multiply two sparse matrices.
EConstraint fConstraint
type of constraint to use for the unfolding
TUnfold(void)
Only for use by root streamer or derived classes.
EHistMap
arrangement of axes for the response matrix (TH2 histogram)
@ kHistMapOutputHoriz
truth level on x-axis of the response matrix
void AddMSparse(TMatrixDSparse *dest, Double_t f, const TMatrixDSparse *src) const
Add a sparse matrix, scaled by a factor, to another scaled matrix.
void GetNormalisationVector(TH1 *s, const Int_t *binMap=nullptr) const
Histogram of truth bins, determined from summing over the response matrix.
TMatrixDSparse * fDXDAZ[2]
vector contribution to the of derivative dx_k/dA_ij
Double_t GetRhoIFromMatrix(TH1 *rhoi, const TMatrixDSparse *eOrig, const Int_t *binMap, TH2 *invEmat) const
Get global correlation coefficients with arbitrary min map.
void InitTUnfold(void)
Initialize data members, for use in constructors.
Double_t GetTau(void) const
Return regularisation parameter.
Int_t RegularizeBins2D(int start_bin, int step1, int nbin1, int step2, int nbin2, ERegMode regmode)
Add regularisation conditions for 2d unfolding.
void GetLsquared(TH2 *lsquared) const
Get matrix of regularisation conditions squared.
void GetInputInverseEmatrix(TH2 *ematrix)
Get inverse of the measurement's covariance matrix.
TMatrixDSparse * fA
response matrix A
TMatrixDSparse * fL
regularisation conditions L
virtual Int_t SetInput(const TH1 *hist_y, Double_t scaleBias=0.0, Double_t oneOverZeroError=0.0, const TH2 *hist_vyy=nullptr, const TH2 *hist_vyy_inv=nullptr)
Define input data for subsequent calls to DoUnfold(tau).
Int_t fIgnoredBins
number of input bins which are dropped because they have error=0
Int_t GetNdf(void) const
get number of degrees of freedom determined in recent unfolding
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
static uint64_t sum(uint64_t i)