Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ROOT::Math::LorentzVector< CoordSystem > Class Template Reference

template<class CoordSystem>
class ROOT::Math::LorentzVector< CoordSystem >

Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system for the spatial vector part.

The metric used for the LorentzVector is (-,-,-,+). In the case of LorentzVector we don't distinguish the concepts of points and displacement vectors as in the 3D case, since the main use case for 4D Vectors is to describe the kinematics of relativistic particles. A LorentzVector behaves like a DisplacementVector in 4D. The Minkowski components could be viewed as v and t, or for kinematic 4-vectors, as p and E.

ROOT provides specialisations and aliases to them of the ROOT::Math::LorentzVector template:

See also
Overview of the physics vector library

Definition at line 59 of file LorentzVector.h.

Public Types

typedef DisplacementVector3D< Cartesian3D< Scalar > > BetaVector
 
typedef CoordSystem CoordinateType
 
typedef CoordSystem::Scalar Scalar
 

Public Member Functions

 LorentzVector ()
 default constructor of an empty vector (Px = Py = Pz = E = 0 )
 
template<class ForeignLorentzVector , typename = decltype(std::declval<ForeignLorentzVector>().x() + std::declval<ForeignLorentzVector>().y() + std::declval<ForeignLorentzVector>().z() + std::declval<ForeignLorentzVector>().t())>
constexpr LorentzVector (const ForeignLorentzVector &v)
 Construct from a foreign 4D vector type, for example, HepLorentzVector Precondition: v must implement methods x(), y(), z(), and t()
 
template<class Coords >
constexpr LorentzVector (const LorentzVector< Coords > &v)
 constructor from a LorentzVector expressed in different coordinates, or using a different Scalar type
 
 LorentzVector (const Scalar &a, const Scalar &b, const Scalar &c, const Scalar &d)
 generic constructors from four scalar values.
 
Scalar Beta () const
 Return beta scalar value.
 
BetaVector BoostToCM () const
 The beta vector for the boost that would bring this vector into its center of mass frame (zero momentum)
 
template<class Other4Vector >
BetaVector BoostToCM (const Other4Vector &v) const
 The beta vector for the boost that would bring this vector into its center of mass frame (zero momentum)
 
Scalar ColinearRapidity () const
 Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)].
 
const CoordSystem & Coordinates () const
 Retrieve a const reference to the coordinates object.
 
unsigned int Dimension () const
 dimension
 
template<class OtherLorentzVector >
Scalar Dot (const OtherLorentzVector &q) const
 scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+) Enable the product using any other LorentzVector implementing the x(), y() , y() and t() member functions
 
Scalar E () const
 return 4-th component (time, or energy for a 4-momentum vector)
 
Scalar e () const
 
Scalar energy () const
 
Scalar Et () const
 return the transverse energy
 
Scalar Et2 () const
 return the transverse energy squared
 
Scalar Eta () const
 pseudorapidity
 
Scalar eta () const
 
Scalar Gamma () const
 Return Gamma scalar value.
 
template<class IT >
void GetCoordinates (IT begin) const
 get internal data into 4 Scalars at *begin
 
template<class IT >
void GetCoordinates (IT begin, IT end) const
 get internal data into 4 Scalars at *begin to *end
 
void GetCoordinates (Scalar &a, Scalar &b, Scalar &c, Scalar &d) const
 get internal data into 4 Scalar numbers
 
void GetCoordinates (Scalar dest[]) const
 get internal data into an array of 4 Scalar numbers
 
bool isLightlike (Scalar tolerance=100 *std::numeric_limits< Scalar >::epsilon()) const
 Determine if momentum-energy can represent a massless particle.
 
bool isSpacelike () const
 Determine if momentum-energy is spacelike, and represents a tachyon.
 
bool isTimelike () const
 Determine if momentum-energy can represent a physical massive particle.
 
Scalar M () const
 return magnitude (mass) using the (-,-,-,+) metric.
 
Scalar M2 () const
 return magnitude (mass) squared M2 = T**2 - X**2 - Y**2 - Z**2 (we use -,-,-,+ metric)
 
Scalar mag () const
 
Scalar mag2 () const
 
Scalar mass () const
 
Scalar mass2 () const
 
Scalar Mt () const
 return the transverse mass
 
Scalar mt () const
 
Scalar Mt2 () const
 return the transverse mass squared
 
Scalar mt2 () const
 
bool operator!= (const LorentzVector &rhs) const
 
LorentzVector operator* (const Scalar &a) const
 product of a LorentzVector by a scalar quantity
 
LorentzVectoroperator*= (Scalar a)
 multiplication by a scalar quantity v *= a
 
LorentzVector operator+ () const
 
template<class OtherLorentzVector >
LorentzVector operator+ (const OtherLorentzVector &v2) const
 addition of two LorentzVectors (v3 = v1 + v2) Enable the addition with any other LorentzVector
 
template<class OtherLorentzVector >
LorentzVectoroperator+= (const OtherLorentzVector &q)
 Self addition with another Vector ( v+= q ) Enable the addition with any other LorentzVector.
 
LorentzVector operator- () const
 Negative of a LorentzVector (q = - v )
 
template<class OtherLorentzVector >
LorentzVector operator- (const OtherLorentzVector &v2) const
 subtraction of two LorentzVectors (v3 = v1 - v2) Enable the subtraction of any other LorentzVector
 
template<class OtherLorentzVector >
LorentzVectoroperator-= (const OtherLorentzVector &q)
 Self subtraction of another Vector from this ( v-= q ) Enable the addition with any other LorentzVector.
 
LorentzVector< CoordSystem > operator/ (const Scalar &a) const
 Divide a LorentzVector by a scalar quantity.
 
LorentzVectoroperator/= (Scalar a)
 division by a scalar quantity v /= a
 
template<class ForeignLorentzVector , typename = decltype(std::declval<ForeignLorentzVector>().x() + std::declval<ForeignLorentzVector>().y() + std::declval<ForeignLorentzVector>().z() + std::declval<ForeignLorentzVector>().t())>
LorentzVectoroperator= (const ForeignLorentzVector &v)
 assignment from any other Lorentz vector implementing x(), y(), z() and t()
 
template<class OtherCoords >
LorentzVectoroperator= (const LorentzVector< OtherCoords > &v)
 Assignment operator from a lorentz vector of arbitrary type.
 
bool operator== (const LorentzVector &rhs) const
 Exact equality.
 
Scalar P () const
 
Scalar P2 () const
 return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
 
Scalar Perp2 () const
 return the square of the transverse spatial component ( X**2 + Y**2 )
 
Scalar perp2 () const
 
Scalar Phi () const
 azimuthal Angle
 
Scalar phi () const
 
Scalar Pt () const
 return the transverse spatial component sqrt ( X**2 + Y**2 )
 
Scalar pt () const
 
Scalar Px () const
 spatial X component
 
Scalar px () const
 
Scalar Py () const
 spatial Y component
 
Scalar py () const
 
Scalar Pz () const
 spatial Z component
 
Scalar pz () const
 
Scalar R () const
 return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
 
Scalar r () const
 
Scalar Rapidity () const
 Rapidity relative to the Z axis: .5 log [(E+Pz)/(E-Pz)].
 
Scalar Rho () const
 
Scalar rho () const
 
LorentzVector< CoordSystem > & SetCoordinates (const Scalar src[])
 Set internal data based on an array of 4 Scalar numbers.
 
template<class IT >
LorentzVector< CoordSystem > & SetCoordinates (IT begin, IT end)
 Set internal data based on 4 Scalars at *begin to *end.
 
LorentzVector< CoordSystem > & SetCoordinates (Scalar a, Scalar b, Scalar c, Scalar d)
 Set internal data based on 4 Scalar numbers.
 
LorentzVector< CoordSystem > & SetE (Scalar a)
 Methods setting a Single-component Work only if the component is one of which the vector is represented.
 
LorentzVector< CoordSystem > & SetEta (Scalar a)
 
LorentzVector< CoordSystem > & SetM (Scalar a)
 
LorentzVector< CoordSystem > & SetPhi (Scalar a)
 
LorentzVector< CoordSystem > & SetPt (Scalar a)
 
LorentzVector< CoordSystem > & SetPx (Scalar a)
 
LorentzVector< CoordSystem > & SetPxPyPzE (Scalar xx, Scalar yy, Scalar zz, Scalar ee)
 
LorentzVector< CoordSystem > & SetPy (Scalar a)
 
LorentzVector< CoordSystem > & SetPz (Scalar a)
 
LorentzVector< CoordSystem > & SetXYZT (Scalar xx, Scalar yy, Scalar zz, Scalar tt)
 set the values of the vector from the cartesian components (x,y,z,t) (if the vector is held in another coordinates, like (Pt,eta,phi,m) then (x, y, z, t) are converted to that form)
 
Scalar T () const
 
Scalar t () const
 
Scalar Theta () const
 polar Angle
 
Scalar theta () const
 
::ROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > > Vect () const
 get the spatial components of the Vector in a DisplacementVector based on Cartesian Coordinates
 
Scalar X () const
 
Scalar x () const
 
Scalar Y () const
 
Scalar y () const
 
Scalar Z () const
 
Scalar z () const
 

Private Attributes

CoordSystem fCoordinates
 

Static Private Attributes

static constexpr unsigned int fDimension = CoordinateType::Dimension
 

#include <Math/GenVector/LorentzVector.h>

Member Typedef Documentation

◆ BetaVector

template<class CoordSystem >
typedef DisplacementVector3D< Cartesian3D<Scalar> > ROOT::Math::LorentzVector< CoordSystem >::BetaVector

Definition at line 549 of file LorentzVector.h.

◆ CoordinateType

template<class CoordSystem >
typedef CoordSystem ROOT::Math::LorentzVector< CoordSystem >::CoordinateType

Definition at line 66 of file LorentzVector.h.

◆ Scalar

template<class CoordSystem >
typedef CoordSystem::Scalar ROOT::Math::LorentzVector< CoordSystem >::Scalar

Definition at line 65 of file LorentzVector.h.

Constructor & Destructor Documentation

◆ LorentzVector() [1/4]

template<class CoordSystem >
ROOT::Math::LorentzVector< CoordSystem >::LorentzVector ( )
inline

default constructor of an empty vector (Px = Py = Pz = E = 0 )

Definition at line 71 of file LorentzVector.h.

◆ LorentzVector() [2/4]

template<class CoordSystem >
ROOT::Math::LorentzVector< CoordSystem >::LorentzVector ( const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d 
)
inline

generic constructors from four scalar values.

The association between values and coordinate depends on the coordinate system. For PxPyPzE4D,

Parameters
ascalar value (Px)
bscalar value (Py)
cscalar value (Pz)
dscalar value (E)

Definition at line 82 of file LorentzVector.h.

◆ LorentzVector() [3/4]

template<class CoordSystem >
template<class Coords >
constexpr ROOT::Math::LorentzVector< CoordSystem >::LorentzVector ( const LorentzVector< Coords > &  v)
inlineexplicitconstexpr

constructor from a LorentzVector expressed in different coordinates, or using a different Scalar type

Definition at line 93 of file LorentzVector.h.

◆ LorentzVector() [4/4]

template<class CoordSystem >
template<class ForeignLorentzVector , typename = decltype(std::declval<ForeignLorentzVector>().x() + std::declval<ForeignLorentzVector>().y() + std::declval<ForeignLorentzVector>().z() + std::declval<ForeignLorentzVector>().t())>
constexpr ROOT::Math::LorentzVector< CoordSystem >::LorentzVector ( const ForeignLorentzVector< CoordSystem > &  v)
inlineexplicitconstexpr

Construct from a foreign 4D vector type, for example, HepLorentzVector Precondition: v must implement methods x(), y(), z(), and t()

Definition at line 105 of file LorentzVector.h.

Member Function Documentation

◆ Beta()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Beta ( ) const
inline

Return beta scalar value.

Definition at line 599 of file LorentzVector.h.

◆ BoostToCM() [1/2]

template<class CoordSystem >
BetaVector ROOT::Math::LorentzVector< CoordSystem >::BoostToCM ( ) const
inline

The beta vector for the boost that would bring this vector into its center of mass frame (zero momentum)

Definition at line 555 of file LorentzVector.h.

◆ BoostToCM() [2/2]

template<class CoordSystem >
template<class Other4Vector >
BetaVector ROOT::Math::LorentzVector< CoordSystem >::BoostToCM ( const Other4Vector &  v) const
inline

The beta vector for the boost that would bring this vector into its center of mass frame (zero momentum)

Definition at line 577 of file LorentzVector.h.

◆ ColinearRapidity()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::ColinearRapidity ( ) const
inline

Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)].

Definition at line 516 of file LorentzVector.h.

◆ Coordinates()

template<class CoordSystem >
const CoordSystem & ROOT::Math::LorentzVector< CoordSystem >::Coordinates ( ) const
inline

Retrieve a const reference to the coordinates object.

Definition at line 170 of file LorentzVector.h.

◆ Dimension()

template<class CoordSystem >
unsigned int ROOT::Math::LorentzVector< CoordSystem >::Dimension ( ) const
inline

dimension

Definition at line 269 of file LorentzVector.h.

◆ Dot()

template<class CoordSystem >
template<class OtherLorentzVector >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Dot ( const OtherLorentzVector< CoordSystem > &  q) const
inline

scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+) Enable the product using any other LorentzVector implementing the x(), y() , y() and t() member functions

Parameters
qany LorentzVector implementing the x(), y() , z() and t() member functions
Returns
the result of v.q of type according to the base scalar type of v

Definition at line 387 of file LorentzVector.h.

◆ E()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::E ( ) const
inline

return 4-th component (time, or energy for a 4-momentum vector)

Definition at line 294 of file LorentzVector.h.

◆ e()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::e ( ) const
inline

Definition at line 649 of file LorentzVector.h.

◆ energy()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::energy ( ) const
inline

Definition at line 664 of file LorentzVector.h.

◆ Et()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Et ( ) const
inline

return the transverse energy

\[ e_t = \sqrt{ \frac{E^2 p_{\perp}^2 }{ |p|^2 } } X sign(E) \]

Definition at line 349 of file LorentzVector.h.

◆ Et2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Et2 ( ) const
inline

return the transverse energy squared

\[ e_t = \frac{E^2 p_{\perp}^2 }{ |p|^2 } \]

Definition at line 343 of file LorentzVector.h.

◆ Eta()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Eta ( ) const
inline

pseudorapidity

\[ \eta = - \ln { \tan { \frac { \theta} {2} } } \]

Definition at line 365 of file LorentzVector.h.

◆ eta()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::eta ( ) const
inline

Definition at line 654 of file LorentzVector.h.

◆ Gamma()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Gamma ( ) const
inline

Return Gamma scalar value.

Definition at line 617 of file LorentzVector.h.

◆ GetCoordinates() [1/4]

template<class CoordSystem >
template<class IT >
void ROOT::Math::LorentzVector< CoordSystem >::GetCoordinates ( IT  begin) const
inline

get internal data into 4 Scalars at *begin

Definition at line 229 of file LorentzVector.h.

◆ GetCoordinates() [2/4]

template<class CoordSystem >
template<class IT >
void ROOT::Math::LorentzVector< CoordSystem >::GetCoordinates ( IT  begin,
IT  end 
) const
inline

get internal data into 4 Scalars at *begin to *end

Definition at line 218 of file LorentzVector.h.

◆ GetCoordinates() [3/4]

template<class CoordSystem >
void ROOT::Math::LorentzVector< CoordSystem >::GetCoordinates ( Scalar a,
Scalar b,
Scalar c,
Scalar d 
) const
inline

get internal data into 4 Scalar numbers

Definition at line 205 of file LorentzVector.h.

◆ GetCoordinates() [4/4]

template<class CoordSystem >
void ROOT::Math::LorentzVector< CoordSystem >::GetCoordinates ( Scalar  dest[]) const
inline

get internal data into an array of 4 Scalar numbers

Definition at line 211 of file LorentzVector.h.

◆ isLightlike()

template<class CoordSystem >
bool ROOT::Math::LorentzVector< CoordSystem >::isLightlike ( Scalar  tolerance = 100*std::numeric_limits<Scalar>::epsilon()) const
inline

Determine if momentum-energy can represent a massless particle.

Definition at line 535 of file LorentzVector.h.

◆ isSpacelike()

template<class CoordSystem >
bool ROOT::Math::LorentzVector< CoordSystem >::isSpacelike ( ) const
inline

Determine if momentum-energy is spacelike, and represents a tachyon.

Definition at line 545 of file LorentzVector.h.

◆ isTimelike()

template<class CoordSystem >
bool ROOT::Math::LorentzVector< CoordSystem >::isTimelike ( ) const
inline

Determine if momentum-energy can represent a physical massive particle.

Definition at line 528 of file LorentzVector.h.

◆ M()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::M ( ) const
inline

return magnitude (mass) using the (-,-,-,+) metric.

If M2 is negative (space-like vector) a GenVector_exception is suggested and if continuing, - sqrt( -M2) is returned

Definition at line 306 of file LorentzVector.h.

◆ M2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::M2 ( ) const
inline

return magnitude (mass) squared M2 = T**2 - X**2 - Y**2 - Z**2 (we use -,-,-,+ metric)

Definition at line 300 of file LorentzVector.h.

◆ mag()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mag ( ) const
inline

Definition at line 658 of file LorentzVector.h.

◆ mag2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mag2 ( ) const
inline

Definition at line 657 of file LorentzVector.h.

◆ mass()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mass ( ) const
inline

Definition at line 665 of file LorentzVector.h.

◆ mass2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mass2 ( ) const
inline

Definition at line 666 of file LorentzVector.h.

◆ Mt()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Mt ( ) const
inline

return the transverse mass

\[ \sqrt{ m_t^2 = E^2 - p{_z}^2} X sign(E^ - p{_z}^2) \]

Definition at line 337 of file LorentzVector.h.

◆ mt()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mt ( ) const
inline

Definition at line 659 of file LorentzVector.h.

◆ Mt2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Mt2 ( ) const
inline

return the transverse mass squared

\[ m_t^2 = E^2 - p{_z}^2 \]

Definition at line 331 of file LorentzVector.h.

◆ mt2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::mt2 ( ) const
inline

Definition at line 660 of file LorentzVector.h.

◆ operator!=()

template<class CoordSystem >
bool ROOT::Math::LorentzVector< CoordSystem >::operator!= ( const LorentzVector< CoordSystem > &  rhs) const
inline

Definition at line 260 of file LorentzVector.h.

◆ operator*()

template<class CoordSystem >
LorentzVector ROOT::Math::LorentzVector< CoordSystem >::operator* ( const Scalar a) const
inline

product of a LorentzVector by a scalar quantity

Parameters
ascalar quantity of type a
Returns
a new mathcoreLorentzVector q = v * a same type as v

Definition at line 468 of file LorentzVector.h.

◆ operator*=()

template<class CoordSystem >
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator*= ( Scalar  a)
inline

multiplication by a scalar quantity v *= a

Definition at line 450 of file LorentzVector.h.

◆ operator+() [1/2]

template<class CoordSystem >
LorentzVector ROOT::Math::LorentzVector< CoordSystem >::operator+ ( ) const
inline

Definition at line 494 of file LorentzVector.h.

◆ operator+() [2/2]

template<class CoordSystem >
template<class OtherLorentzVector >
LorentzVector ROOT::Math::LorentzVector< CoordSystem >::operator+ ( const OtherLorentzVector< CoordSystem > &  v2) const
inline

addition of two LorentzVectors (v3 = v1 + v2) Enable the addition with any other LorentzVector

Parameters
v2any LorentzVector implementing the x(), y() , z() and t() member functions
Returns
a new LorentzVector of the same type as v1

Definition at line 424 of file LorentzVector.h.

◆ operator+=()

template<class CoordSystem >
template<class OtherLorentzVector >
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator+= ( const OtherLorentzVector< CoordSystem > &  q)
inline

Self addition with another Vector ( v+= q ) Enable the addition with any other LorentzVector.

Parameters
qany LorentzVector implementing the x(), y() , z() and t() member functions

Definition at line 398 of file LorentzVector.h.

◆ operator-() [1/2]

template<class CoordSystem >
LorentzVector ROOT::Math::LorentzVector< CoordSystem >::operator- ( ) const
inline

Negative of a LorentzVector (q = - v )

Returns
a new LorentzVector with opposite direction and time

Definition at line 489 of file LorentzVector.h.

◆ operator-() [2/2]

template<class CoordSystem >
template<class OtherLorentzVector >
LorentzVector ROOT::Math::LorentzVector< CoordSystem >::operator- ( const OtherLorentzVector< CoordSystem > &  v2) const
inline

subtraction of two LorentzVectors (v3 = v1 - v2) Enable the subtraction of any other LorentzVector

Parameters
v2any LorentzVector implementing the x(), y() , z() and t() member functions
Returns
a new LorentzVector of the same type as v1

Definition at line 439 of file LorentzVector.h.

◆ operator-=()

template<class CoordSystem >
template<class OtherLorentzVector >
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator-= ( const OtherLorentzVector< CoordSystem > &  q)
inline

Self subtraction of another Vector from this ( v-= q ) Enable the addition with any other LorentzVector.

Parameters
qany LorentzVector implementing the x(), y() , z() and t() member functions

Definition at line 411 of file LorentzVector.h.

◆ operator/()

template<class CoordSystem >
LorentzVector< CoordSystem > ROOT::Math::LorentzVector< CoordSystem >::operator/ ( const Scalar a) const
inline

Divide a LorentzVector by a scalar quantity.

Parameters
ascalar quantity of type a
Returns
a new mathcoreLorentzVector q = v / a same type as v

Definition at line 479 of file LorentzVector.h.

◆ operator/=()

template<class CoordSystem >
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator/= ( Scalar  a)
inline

division by a scalar quantity v /= a

Definition at line 458 of file LorentzVector.h.

◆ operator=() [1/2]

template<class CoordSystem >
template<class ForeignLorentzVector , typename = decltype(std::declval<ForeignLorentzVector>().x() + std::declval<ForeignLorentzVector>().y() + std::declval<ForeignLorentzVector>().z() + std::declval<ForeignLorentzVector>().t())>
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator= ( const ForeignLorentzVector< CoordSystem > &  v)
inline

assignment from any other Lorentz vector implementing x(), y(), z() and t()

Definition at line 144 of file LorentzVector.h.

◆ operator=() [2/2]

template<class CoordSystem >
template<class OtherCoords >
LorentzVector & ROOT::Math::LorentzVector< CoordSystem >::operator= ( const LorentzVector< OtherCoords > &  v)
inline

Assignment operator from a lorentz vector of arbitrary type.

Definition at line 130 of file LorentzVector.h.

◆ operator==()

template<class CoordSystem >
bool ROOT::Math::LorentzVector< CoordSystem >::operator== ( const LorentzVector< CoordSystem > &  rhs) const
inline

Exact equality.

Definition at line 257 of file LorentzVector.h.

◆ P()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::P ( ) const
inline

Definition at line 311 of file LorentzVector.h.

◆ P2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::P2 ( ) const
inline

return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )

Definition at line 315 of file LorentzVector.h.

◆ Perp2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Perp2 ( ) const
inline

return the square of the transverse spatial component ( X**2 + Y**2 )

Definition at line 319 of file LorentzVector.h.

◆ perp2()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::perp2 ( ) const
inline

Definition at line 656 of file LorentzVector.h.

◆ Phi()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Phi ( ) const
inline

azimuthal Angle

Definition at line 354 of file LorentzVector.h.

◆ phi()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::phi ( ) const
inline

Definition at line 652 of file LorentzVector.h.

◆ Pt()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Pt ( ) const
inline

return the transverse spatial component sqrt ( X**2 + Y**2 )

Definition at line 324 of file LorentzVector.h.

◆ pt()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::pt ( ) const
inline

Definition at line 655 of file LorentzVector.h.

◆ Px()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Px ( ) const
inline

spatial X component

Definition at line 279 of file LorentzVector.h.

◆ px()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::px ( ) const
inline

Definition at line 646 of file LorentzVector.h.

◆ Py()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Py ( ) const
inline

spatial Y component

Definition at line 284 of file LorentzVector.h.

◆ py()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::py ( ) const
inline

Definition at line 647 of file LorentzVector.h.

◆ Pz()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Pz ( ) const
inline

spatial Z component

Definition at line 289 of file LorentzVector.h.

◆ pz()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::pz ( ) const
inline

Definition at line 648 of file LorentzVector.h.

◆ R()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::R ( ) const
inline

return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )

Definition at line 310 of file LorentzVector.h.

◆ r()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::r ( ) const
inline

Definition at line 650 of file LorentzVector.h.

◆ Rapidity()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Rapidity ( ) const
inline

Rapidity relative to the Z axis: .5 log [(E+Pz)/(E-Pz)].

Definition at line 503 of file LorentzVector.h.

◆ Rho()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Rho ( ) const
inline

Definition at line 325 of file LorentzVector.h.

◆ rho()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::rho ( ) const
inline

Definition at line 653 of file LorentzVector.h.

◆ SetCoordinates() [1/3]

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetCoordinates ( const Scalar  src[])
inline

Set internal data based on an array of 4 Scalar numbers.

Definition at line 177 of file LorentzVector.h.

◆ SetCoordinates() [2/3]

template<class CoordSystem >
template<class IT >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetCoordinates ( IT  begin,
IT  end 
)
inline

Set internal data based on 4 Scalars at *begin to *end.

Definition at line 194 of file LorentzVector.h.

◆ SetCoordinates() [3/3]

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetCoordinates ( Scalar  a,
Scalar  b,
Scalar  c,
Scalar  d 
)
inline

Set internal data based on 4 Scalar numbers.

Definition at line 185 of file LorentzVector.h.

◆ SetE()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetE ( Scalar  a)
inline

Methods setting a Single-component Work only if the component is one of which the vector is represented.

For example SetE will work for a PxPyPzE Vector but not for a PxPyPzM Vector.

Definition at line 674 of file LorentzVector.h.

◆ SetEta()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetEta ( Scalar  a)
inline

Definition at line 675 of file LorentzVector.h.

◆ SetM()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetM ( Scalar  a)
inline

Definition at line 676 of file LorentzVector.h.

◆ SetPhi()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPhi ( Scalar  a)
inline

Definition at line 677 of file LorentzVector.h.

◆ SetPt()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPt ( Scalar  a)
inline

Definition at line 678 of file LorentzVector.h.

◆ SetPx()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPx ( Scalar  a)
inline

Definition at line 679 of file LorentzVector.h.

◆ SetPxPyPzE()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPxPyPzE ( Scalar  xx,
Scalar  yy,
Scalar  zz,
Scalar  ee 
)
inline

Definition at line 247 of file LorentzVector.h.

◆ SetPy()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPy ( Scalar  a)
inline

Definition at line 680 of file LorentzVector.h.

◆ SetPz()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetPz ( Scalar  a)
inline

Definition at line 681 of file LorentzVector.h.

◆ SetXYZT()

template<class CoordSystem >
LorentzVector< CoordSystem > & ROOT::Math::LorentzVector< CoordSystem >::SetXYZT ( Scalar  xx,
Scalar  yy,
Scalar  zz,
Scalar  tt 
)
inline

set the values of the vector from the cartesian components (x,y,z,t) (if the vector is held in another coordinates, like (Pt,eta,phi,m) then (x, y, z, t) are converted to that form)

Definition at line 243 of file LorentzVector.h.

◆ T()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::T ( ) const
inline

Definition at line 295 of file LorentzVector.h.

◆ t()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::t ( ) const
inline

Definition at line 645 of file LorentzVector.h.

◆ Theta()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Theta ( ) const
inline

polar Angle

Definition at line 359 of file LorentzVector.h.

◆ theta()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::theta ( ) const
inline

Definition at line 651 of file LorentzVector.h.

◆ Vect()

template<class CoordSystem >
::ROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > > ROOT::Math::LorentzVector< CoordSystem >::Vect ( ) const
inline

get the spatial components of the Vector in a DisplacementVector based on Cartesian Coordinates

Definition at line 371 of file LorentzVector.h.

◆ X()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::X ( ) const
inline

Definition at line 280 of file LorentzVector.h.

◆ x()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::x ( ) const
inline

Definition at line 642 of file LorentzVector.h.

◆ Y()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Y ( ) const
inline

Definition at line 285 of file LorentzVector.h.

◆ y()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::y ( ) const
inline

Definition at line 643 of file LorentzVector.h.

◆ Z()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::Z ( ) const
inline

Definition at line 290 of file LorentzVector.h.

◆ z()

template<class CoordSystem >
Scalar ROOT::Math::LorentzVector< CoordSystem >::z ( ) const
inline

Definition at line 644 of file LorentzVector.h.

Member Data Documentation

◆ fCoordinates

template<class CoordSystem >
CoordSystem ROOT::Math::LorentzVector< CoordSystem >::fCoordinates
private

Definition at line 685 of file LorentzVector.h.

◆ fDimension

template<class CoordSystem >
constexpr unsigned int ROOT::Math::LorentzVector< CoordSystem >::fDimension = CoordinateType::Dimension
staticconstexprprivate

Definition at line 686 of file LorentzVector.h.

  • math/genvector/inc/Math/GenVector/LorentzVector.h