library: libMatrix #include "TDecompSVD.h" |
TDecompSVD
class description - source file - inheritance tree (.ps)
protected:
static Bool_t Bidiagonalize(TMatrixD& v, TMatrixD& u, TVectorD& sDiag, TVectorD& oDiag)
static void Diag_1(TMatrixD& v, TVectorD& sDiag, TVectorD& oDiag, Int_t k)
static void Diag_2(TVectorD& sDiag, TVectorD& oDiag, Int_t k, Int_t l)
static void Diag_3(TMatrixD& v, TMatrixD& u, TVectorD& sDiag, TVectorD& oDiag, Int_t k, Int_t l)
static Bool_t Diagonalize(TMatrixD& v, TMatrixD& u, TVectorD& sDiag, TVectorD& oDiag)
virtual const TMatrixDBase& GetDecompMatrix() const
static void SortSingular(TMatrixD& v, TMatrixD& u, TVectorD& sDiag)
public:
TDecompSVD()
TDecompSVD(Int_t nrows, Int_t ncols)
TDecompSVD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb)
TDecompSVD(const TMatrixD& m, Double_t tol = 0.0)
TDecompSVD(const TDecompSVD& another)
virtual ~TDecompSVD()
static TClass* Class()
virtual Double_t Condition()
virtual Bool_t Decompose()
virtual void Det(Double_t& d1, Double_t& d2)
const TMatrixD GetMatrix() const
virtual Int_t GetNcols() const
virtual Int_t GetNrows() const
const TVectorD& GetSig() const
const TMatrixD& GetU() const
const TMatrixD& GetV() const
virtual TClass* IsA() const
TDecompSVD& operator=(const TDecompSVD& source)
virtual void Print(Option_t* opt) const
virtual void SetMatrix(const TMatrixD& a)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual Bool_t Solve(TVectorD& b)
virtual TVectorD Solve(const TVectorD& b, Bool_t& ok)
virtual Bool_t Solve(TMatrixDColumn& b)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
virtual Bool_t TransSolve(TVectorD& b)
virtual TVectorD TransSolve(const TVectorD& b, Bool_t& ok)
virtual Bool_t TransSolve(TMatrixDColumn& b)
protected:
TMatrixD fU orthogonal matrix
TMatrixD fV orthogonal matrix
TVectorD fSig diagonal of diagonal matrix
public:
static const enum TDecompSVD:: kWorkMax
Single Value Decomposition class
For an (m x n) matrix A with m >= n, the singular value decomposition
is
an (m x m) orthogonal matrix fU, an (m x n) diagonal matrix fS, and
an (n x n) orthogonal matrix fV so that A = U*S*V'.
The singular values, fSig[k] = S[k][k], are ordered so that
fSig[0] >= fSig[1] >= ... >= fSig[n-1].
The singular value decompostion always exists, so the decomposition
will (as long as m >=n) never fail. If m < n, the user should add
sufficient zero rows to A , so that m == n
Here fTol is used to set the threshold on the minimum allowed value
of the singular values:
min_singular = fTol*max(fSig[i])
TDecompSVD(Int_t nrows,Int_t ncols)
TDecompSVD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
TDecompSVD(const TMatrixD &a,Double_t tol)
TDecompSVD(const TDecompSVD &another): TDecompBase(another)
Bool_t Decompose()
Bool_t Bidiagonalize(TMatrixD &v,TMatrixD &u,TVectorD &sDiag,TVectorD &oDiag)
Bidiagonalize the (m x n) - matrix a (stored in v) through a series of Householder
transformations applied to the left (Q^T) and to the right (H) of a ,
so that A = Q . C . H^T with matrix C bidiagonal. Q and H are orthogonal matrices .
Output:
v - (n x n) - matrix H in the (n x n) part of v
u - (m x m) - matrix Q^T
sDiag - diagonal of the (m x n) C
oDiag - off-diagonal elements of matrix C
Test code for the output:
const Int_t nRow = v.GetNrows();
const Int_t nCol = v.GetNcols();
TMatrixD H(v); H.ResizeTo(nCol,nCol);
TMatrixD E1(nCol,nCol); E1.UnitMatrix();
TMatrixD Ht(TMatrixDBase::kTransposed,H);
Bool_t ok = kTRUE;
ok &= VerifyMatrixIdentity(Ht * H,E1,kTRUE,1.0e-13);
ok &= VerifyMatrixIdentity(H * Ht,E1,kTRUE,1.0e-13);
TMatrixD E2(nRow,nRow); E2.UnitMatrix();
TMatrixD Qt(u);
TMatrixD Q(TMatrixDBase::kTransposed,Qt);
ok &= VerifyMatrixIdentity(Q * Qt,E2,kTRUE,1.0e-13);
TMatrixD C(nRow,nCol);
TMatrixDDiag(C) = sDiag;
for (Int_t i = 0; i < nCol-1; i++)
C(i,i+1) = oDiag(i+1);
TMatrixD A = Q*C*Ht;
ok &= VerifyMatrixIdentity(A,a,kTRUE,1.0e-13);
Bool_t Diagonalize(TMatrixD &v,TMatrixD &u,TVectorD &sDiag,TVectorD &oDiag)
Diagonalizes in an iterativ fashion the bidiagonal matrix C as described through
sDiag and oDiag, so that S' = U'^T . C . V' is diagonal. U' and V' are orthogonal
matrices .
Output:
v - (n x n) - matrix H . V' in the (n x n) part of v
u - (m x m) - matrix U'^T . Q^T
sDiag - diagonal of the (m x n) S'
return convergence flag: 0 -> no convergence
1 -> convergence
Test code for the output:
const Int_t nRow = v.GetNrows();
const Int_t nCol = v.GetNcols();
TMatrixD tmp = v; tmp.ResizeTo(nCol,nCol);
TMatrixD Vprime = Ht*tmp;
TMatrixD Vprimet(TMatrixDBase::kTransposed,Vprime);
TMatrixD Uprimet = u*Q;
TMatrixD Uprime(TMatrixDBase::kTransposed,Uprimet);
TMatrixD Sprime(nRow,nCol);
TMatrixDDiag(Sprime) = sDiag;
ok &= VerifyMatrixIdentity(Uprimet * C * Vprime,Sprime,kTRUE,1.0e-13);
ok &= VerifyMatrixIdentity(Q*Uprime * Sprime * Vprimet * Ht,a,kTRUE,1.0e-13);
void Diag_1(TMatrixD &v,TVectorD &sDiag,TVectorD &oDiag,Int_t k)
void Diag_2(TVectorD &sDiag,TVectorD &oDiag,Int_t k,Int_t l)
void Diag_3(TMatrixD &v,TMatrixD &u,TVectorD &sDiag,TVectorD &oDiag,Int_t k,Int_t l)
void SortSingular(TMatrixD &v,TMatrixD &u,TVectorD &sDiag)
Perform a permutation transformation on the diagonal matrix S', so that
matrix S'' = U''^T . S' . V'' has diagonal elements ordered such that they
do not increase.
Output:
v - (n x n) - matrix H . V' . V'' in the (n x n) part of v
u - (m x m) - matrix U''^T . U'^T . Q^T
sDiag - diagonal of the (m x n) S''
const TMatrixD GetMatrix()
Reconstruct the original matrix using the decomposition parts
void SetMatrix(const TMatrixD &a)
Bool_t Solve(TVectorD &b)
Solve Ax=b assuming the SVD form of A is stored . Solution returned in b.
If A is of size (m x n), input vector b should be of size (m), however,
the solution, returned in b, will be in the first (n) elements .
For m > n , x is the least-squares solution of min(A . x - b)
TVectorD Solve(const TVectorD &b,Bool_t &ok)
Solve Ax=b assuming the SVD form of A is stored .
If A is of size (m x n), the solution will be of size (n) .
For m > n , x is the least-squares solution of min(A . x - b)
Bool_t Solve(TMatrixDColumn &cb)
Bool_t TransSolve(TVectorD &b)
Solve A^T x=b assuming the SVD form of A is stored . Solution returned in b.
TVectorD TransSolve(const TVectorD &b,Bool_t &ok)
Solve A^T x=b assuming the SVD form of A is stored .
Bool_t TransSolve(TMatrixDColumn &cb)
Double_t Condition()
void Det(Double_t &d1,Double_t &d2)
void Print(Option_t *opt) const
Inline Functions
void ~TDecompSVD()
const TMatrixDBase& GetDecompMatrix() const
TDecompSVD TDecompSVD(const TDecompSVD& another)
Int_t GetNrows() const
Int_t GetNcols() const
const TMatrixD& GetU() const
const TMatrixD& GetV() const
const TVectorD& GetSig() const
TDecompSVD& operator=(const TDecompSVD& source)
TClass* Class()
TClass* IsA() const
void ShowMembers(TMemberInspector& insp, char* parent)
void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
Last update: root/matrix:$Name: $:$Id: TDecompSVD.cxx,v 1.16 2004/06/13 14:53:15 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.