library: libMatrix #include "TMatrixDSparse.h" |
TMatrixDSparse
class description - source file - inheritance tree (.ps)
protected:
virtual void Allocate(Int_t nrows, Int_t ncols, Int_t row_lwb = 0, Int_t col_lwb = 0, Int_t init = 0, Int_t nr_nonzeros = 0)
void AMinusB(const TMatrixDSparse& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMinusB(const TMatrixDSparse& a, const TMatrixD& b, Int_t constr = 1)
void AMinusB(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMultB(const TMatrixDSparse& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMultB(const TMatrixDSparse& a, const TMatrixD& b, Int_t constr = 1)
void AMultB(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMultBt(const TMatrixDSparse& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMultBt(const TMatrixDSparse& a, const TMatrixD& b, Int_t constr = 1)
void AMultBt(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
void APlusB(const TMatrixDSparse& a, const TMatrixDSparse& b, Int_t constr = 1)
void APlusB(const TMatrixDSparse& a, const TMatrixD& b, Int_t constr = 1)
void APlusB(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
void SetSparseIndexAB(const TMatrixDSparse& a, const TMatrixDSparse& b)
public:
TMatrixDSparse()
TMatrixDSparse(Int_t nrows, Int_t ncols)
TMatrixDSparse(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb)
TMatrixDSparse(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros, Int_t* row, Int_t* col, Double_t* data)
TMatrixDSparse(const TMatrixDSparse& another)
TMatrixDSparse(const TMatrixD& another)
TMatrixDSparse(TMatrixDBase::EMatrixCreatorsOp1 op, const TMatrixDSparse& prototype)
TMatrixDSparse(const TMatrixDSparse& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSparse& b)
TMatrixDSparse GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
virtual ~TMatrixDSparse()
static TClass* Class()
virtual void Clear(Option_t*)
virtual Double_t ColNorm() const
virtual void ExtractRow(Int_t row, Int_t col, Double_t* v, Int_t n = -1) const
virtual const Int_t* GetColIndexArray() const
virtual Int_t* GetColIndexArray()
virtual void GetMatrix2Array(Double_t* data, Option_t* option) const
virtual const Double_t* GetMatrixArray() const
virtual Double_t* GetMatrixArray()
virtual const Int_t* GetRowIndexArray() const
virtual Int_t* GetRowIndexArray()
virtual TMatrixDBase& GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixDBase& target, Option_t* option = "S") const
virtual TMatrixDBase& InsertRow(Int_t row, Int_t col, const Double_t* v, Int_t n = -1)
virtual TClass* IsA() const
virtual Bool_t IsSymmetric() const
void Mult(const TMatrixDSparse& a, const TMatrixDSparse& b)
virtual Int_t NonZeros() const
virtual TMatrixDBase& NormByDiag(const TVectorD&, Option_t*)
virtual Double_t operator()(Int_t rown, Int_t coln) const
virtual Double_t& operator()(Int_t rown, Int_t coln)
TMatrixDSparse& operator*=(Double_t val)
TMatrixDSparse& operator*=(const TMatrixDSparse& source)
TMatrixDSparse& operator*=(const TMatrixD& source)
TMatrixDSparse& operator+=(Double_t val)
TMatrixDSparse& operator+=(const TMatrixDSparse& source)
TMatrixDSparse& operator+=(const TMatrixD& source)
TMatrixDSparse& operator-=(Double_t val)
TMatrixDSparse& operator-=(const TMatrixDSparse& source)
TMatrixDSparse& operator-=(const TMatrixD& source)
TMatrixDSparse& operator=(const TMatrixD& source)
TMatrixDSparse& operator=(const TMatrixDSparse& source)
TMatrixDSparse& operator=(Double_t val)
const TMatrixDSparseRow_const operator[](Int_t rown) const
TMatrixDSparseRow operator[](Int_t rown)
virtual TMatrixDBase& Randomize(Double_t alpha, Double_t beta, Double_t& seed)
virtual TMatrixDSparse& RandomizePD(Double_t alpha, Double_t beta, Double_t& seed)
virtual TMatrixDBase& ResizeTo(Int_t nrows, Int_t ncols, Int_t nr_nonzeros = -1)
virtual TMatrixDBase& ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros = -1)
TMatrixDBase& ResizeTo(const TMatrixDSparse& m)
virtual Double_t RowNorm() const
virtual TMatrixDBase& SetColIndexArray(Int_t* data)
virtual TMatrixDBase& SetMatrixArray(const Double_t* data, Option_t*)
virtual TMatrixDBase& SetMatrixArray(Int_t nr_nonzeros, Int_t* irow, Int_t* icol, Double_t* data)
virtual TMatrixDBase& SetRowIndexArray(Int_t* data)
TMatrixDSparse& SetSparseIndex(const TMatrixDBase& another)
TMatrixDSparse& SetSparseIndex(Int_t nelem_new)
virtual TMatrixDBase& SetSub(Int_t row_lwb, Int_t col_lwb, const TMatrixDBase& source)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
TMatrixDSparse& T()
TMatrixDSparse& Transpose(const TMatrixDSparse& source)
virtual TMatrixDBase& UnitMatrix()
TMatrixDSparse& Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros, Int_t* pRowIndex, Int_t* pColIndex, Double_t* pData)
TMatrixDSparse& Use(Int_t nrows, Int_t ncols, Int_t nr_nonzeros, Int_t* pRowIndex, Int_t* pColIndex, Double_t* pData)
TMatrixDSparse& Use(TMatrixDSparse& a)
virtual TMatrixDBase& Zero()
protected:
Int_t* fRowIndex [fNrowIndex] row index
Int_t* fColIndex [fNelems] column index
Double_t* fElements [fNelems]
TMatrixDSparse
Implementation of a general sparse matrix in the Harwell-Boeing
format
Besides the usual shape/size decsriptors of a matrix like fNrows,
fRowLwb,fNcols and fColLwb, we also store a row index, fRowIndex and
column index, fColIndex only for those elements unequal zero:
fRowIndex[0,..,fNrows]: Stores for each row the index range of
the elements in the data and column array
fColIndex[0,..,fNelems-1]: Stores the column number for each data
element != 0
As an example how to access all sparse data elements:
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
const Double_t data = fElements[index];
printf("data(%d,%d) = %.4e\n",irow+fRowLwb,icol+fColLwb,data);
}
}
When checking whether sparse matrices are compatible (like in an
assigment !), not only the shape parameters are compared but also
the sparse structure through fRowIndex and fColIndex .
Several methods exist to fill a sparse matrix with data entries.
Most are the same like for dense matrices but some care has to be
taken with regard to performance. In the constructor, always the
shape of the matrix has to be specified in some form . Data can be
entered through the following methods :
1. constructor
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,
Int_t col_upb,Int_t nr_nonzeros,
Int_t *row, Int_t *col,Double_t *data);
It uses SetMatrixArray(..), see below
2. copy constructors
3. SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data)
where it is expected that the irow,icol and data array contain
nr entries . Only the entries with non-zero data[i] value are
inserted !
4. TMatrixDSparse a(n,m); for(....) { a(i,j) = ....
This is a very flexible method but expensive :
- if no entry for slot (i,j) is found in the sparse index table
it will be entered, which involves some memory management !
- before invoking this method in a loop it is smart to first
set the index table through a call to SetSparseIndex(..)
5. SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
the matrix to be inserted at position (row_lwb,col_lwb) can be
both dense or sparse .
TMatrixDSparse(Int_t no_rows,Int_t no_cols)
Space is allocated for row/column indices and data, but the sparse structure
information has still to be set !
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
Space is allocated for row/column indices and data, but the sparse structure
information has still to be set !
TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr,Int_t *row, Int_t *col,Double_t *data)
Space is allocated for row/column indices and data. Sparse row/column index
structure together with data is coming from the arrays, row, col and data, resp .
TMatrixDSparse(const TMatrixDSparse &another) : TMatrixDBase(another)
TMatrixDSparse(const TMatrixD &another) : TMatrixDBase(another)
TMatrixDSparse(EMatrixCreatorsOp1 op,const TMatrixDSparse &prototype)
Create a matrix applying a specific operation to the prototype.
Supported operations are: kZero, kUnit, kTransposed and kAtA
TMatrixDSparse(const TMatrixDSparse &a,EMatrixCreatorsOp2 op,const TMatrixDSparse &b)
Create a matrix applying a specific operation to two prototypes.
Supported operations are: kMult (a*b), kMultTranspose (a*b'), kPlus (a+b), kMinus (a-b)
void Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb,
Int_t init,Int_t nr_nonzeros)
Allocate new matrix. Arguments are number of rows, columns, row lowerbound (0 default)
and column lowerbound (0 default), 0 initialization flag and number of non-zero
elements (only relevant for sparse format).
void SetSparseIndexAB(const TMatrixDSparse &a,const TMatrixDSparse &b)
Set the row/column indices to the "sum" of matrices a and b
It is assumed that enough space was reserved
TMatrixDBase& InsertRow(Int_t rown,Int_t coln,const Double_t *v,Int_t n)
Insert in row rown, n elements of array v at column coln
void ExtractRow(Int_t rown, Int_t coln, Double_t *v,Int_t n) const
Store in array v, n matrix elements of row rown starting at column coln
void AMultBt(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
General matrix multiplication. Create a matrix C such that C = A * B'.
Note, matrix C is allocated for constr=1.
void AMultBt(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
General matrix multiplication. Create a matrix C such that C = A * B'.
Note, matrix C is allocated for constr=1.
void AMultBt(const TMatrixD &a,const TMatrixDSparse &b,Int_t constr)
General matrix multiplication. Create a matrix C such that C = A * B'.
Note, matrix C is allocated for constr=1.
void APlusB(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
General matrix addition. Create a matrix C such that C = A + B.
Note, matrix C is allocated for constr=1.
void APlusB(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
General matrix addition. Create a matrix C such that C = A + B.
Note, matrix C is allocated for constr=1.
void AMinusB(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
General matrix subtraction. Create a matrix C such that C = A - B.
Note, matrix C is allocated for constr=1.
void AMinusB(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
General matrix subtraction. Create a matrix C such that C = A - B.
Note, matrix C is allocated for constr=1.
void AMinusB(const TMatrixD &a,const TMatrixDSparse &b,Int_t constr)
General matrix subtraction. Create a matrix C such that C = A - B.
Note, matrix C is allocated for constr=1.
void GetMatrix2Array(Double_t *data,Option_t * /*option*/) const
Copy matrix data to array . It is assumed that array is of size >= fNelems
TMatrixDBase& SetMatrixArray(Int_t nr,Int_t *row,Int_t *col,Double_t *data)
Copy nr elements from row/col index and data array to matrix . It is assumed
that arrays are of size >= nr
TMatrixDSparse& SetSparseIndex(const TMatrixDBase &source)
Use non-zero data of matrix source to set the sparse structure
TMatrixDSparse& SetSparseIndex(Int_t nelems_new)
Increase/decrease the number of non-zero elements to nelems_new
TMatrixDBase& ResizeTo(Int_t nrows,Int_t ncols,Int_t nr_nonzeros)
Set size of the matrix to nrows x ncols with nr_nonzeros non-zero entries
if nr_nonzeros > 0 .
New dynamic elements are created, the overlapping part of the old ones are
copied to the new structures, then the old elements are deleted.
TMatrixDBase& ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros)
Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] with nr_nonzeros
non-zero entries if nr_nonzeros > 0 .
New dynamic elemenst are created, the overlapping part of the old ones are
copied to the new structures, then the old elements are deleted.
TMatrixDSparse& Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros,Int_t *pRowIndex,Int_t *pColIndex,Double_t *pData)
TMatrixDBase& GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
TMatrixDBase &target,Option_t *option) const
Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the
returned matrix depends on the argument option:
option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default)
else : return [row_lwb..row_upb][col_lwb..col_upb]
TMatrixDBase& SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
Insert matrix source starting at [row_lwb][col_lwb], thereby overwriting the part
[row_lwb..row_lwb+nrows_source-1][col_lwb..col_lwb+ncols_source-1];
TMatrixDSparse& Transpose(const TMatrixDSparse &source)
Transpose a matrix.
TMatrixDBase& Zero()
TMatrixDBase& UnitMatrix()
Make a unit matrix (matrix need not be a square one).
Double_t RowNorm() const
Row matrix norm, MAX{ SUM{ |M(i,j)|, over j}, over i}.
The norm is induced by the infinity vector norm.
Double_t ColNorm() const
Column matrix norm, MAX{ SUM{ |M(i,j)|, over i}, over j}.
The norm is induced by the 1 vector norm.
TMatrixDBase& Randomize(Double_t alpha,Double_t beta,Double_t &seed)
randomize matrix element values
TMatrixDSparse& RandomizePD(Double_t alpha,Double_t beta,Double_t &seed)
randomize matrix element values but keep matrix symmetric positive definite
Inline Functions
void ~TMatrixDSparse()
void AMultB(const TMatrixDSparse& a, const TMatrixDSparse& b, Int_t constr = 1)
void AMultB(const TMatrixDSparse& a, const TMatrixD& b, Int_t constr = 1)
void AMultB(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
void APlusB(const TMatrixD& a, const TMatrixDSparse& b, Int_t constr = 1)
TMatrixDSparse TMatrixDSparse(const TMatrixDSparse& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSparse& b)
const Double_t* GetMatrixArray() const
Double_t* GetMatrixArray()
const Int_t* GetRowIndexArray() const
Int_t* GetRowIndexArray()
const Int_t* GetColIndexArray() const
Int_t* GetColIndexArray()
TMatrixDBase& SetRowIndexArray(Int_t* data)
TMatrixDBase& SetColIndexArray(Int_t* data)
TMatrixDBase& SetMatrixArray(Int_t nr_nonzeros, Int_t* irow, Int_t* icol, Double_t* data)
TMatrixDBase& ResizeTo(const TMatrixDSparse& m)
void Clear(Option_t*)
TMatrixDSparse& Use(Int_t nrows, Int_t ncols, Int_t nr_nonzeros, Int_t* pRowIndex, Int_t* pColIndex, Double_t* pData)
TMatrixDSparse& Use(TMatrixDSparse& a)
TMatrixDSparse GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
Bool_t IsSymmetric() const
TMatrixDSparse& T()
void Mult(const TMatrixDSparse& a, const TMatrixDSparse& b)
Int_t NonZeros() const
TMatrixDBase& NormByDiag(const TVectorD&, Option_t*)
Double_t operator()(Int_t rown, Int_t coln) const
Double_t& operator()(Int_t rown, Int_t coln)
const TMatrixDSparseRow_const operator[](Int_t rown) const
TMatrixDSparseRow operator[](Int_t rown)
TMatrixDSparse& operator=(const TMatrixD& source)
TMatrixDSparse& operator=(const TMatrixDSparse& source)
TMatrixDSparse& operator=(Double_t val)
TMatrixDSparse& operator-=(Double_t val)
TMatrixDSparse& operator+=(Double_t val)
TMatrixDSparse& operator*=(Double_t val)
TMatrixDSparse& operator+=(const TMatrixDSparse& source)
TMatrixDSparse& operator+=(const TMatrixD& source)
TMatrixDSparse& operator-=(const TMatrixDSparse& source)
TMatrixDSparse& operator-=(const TMatrixD& source)
TMatrixDSparse& operator*=(const TMatrixDSparse& source)
TMatrixDSparse& operator*=(const TMatrixD& source)
TClass* Class()
TClass* IsA() const
void ShowMembers(TMemberInspector& insp, char* parent)
void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
Last update: root/matrix:$Name: $:$Id: TMatrixDSparse.cxx,v 1.15 2004/06/22 19:57:01 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.