// @(#)root/matrix:$Name: $:$Id: TMatrixDSparse.cxx,v 1.15 2004/06/22 19:57:01 brun Exp $
// Authors: Fons Rademakers, Eddy Offermann Feb 2004
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TMatrixDSparse //
// //
// Implementation of a general sparse matrix in the Harwell-Boeing //
// format //
// //
// Besides the usual shape/size decsriptors of a matrix like fNrows, //
// fRowLwb,fNcols and fColLwb, we also store a row index, fRowIndex and //
// column index, fColIndex only for those elements unequal zero: //
// //
// fRowIndex[0,..,fNrows]: Stores for each row the index range of //
// the elements in the data and column array //
// fColIndex[0,..,fNelems-1]: Stores the column number for each data //
// element != 0 //
// //
// As an example how to access all sparse data elements: //
// //
// for (Int_t irow = 0; irow < fNrows; irow++) { //
// const Int_t sIndex = fRowIndex[irow]; //
// const Int_t eIndex = fRowIndex[irow+1]; //
// for (Int_t index = sIndex; index < eIndex; index++) { //
// const Int_t icol = fColIndex[index]; //
// const Double_t data = fElements[index]; //
// printf("data(%d,%d) = %.4e\n",irow+fRowLwb,icol+fColLwb,data); //
// } //
// } //
// //
// When checking whether sparse matrices are compatible (like in an //
// assigment !), not only the shape parameters are compared but also //
// the sparse structure through fRowIndex and fColIndex . //
// //
// Several methods exist to fill a sparse matrix with data entries. //
// Most are the same like for dense matrices but some care has to be //
// taken with regard to performance. In the constructor, always the //
// shape of the matrix has to be specified in some form . Data can be //
// entered through the following methods : //
// 1. constructor //
// TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb, //
// Int_t col_upb,Int_t nr_nonzeros, //
// Int_t *row, Int_t *col,Double_t *data); //
// It uses SetMatrixArray(..), see below //
// 2. copy constructors //
// 3. SetMatrixArray(Int_t nr,Int_t *irow,Int_t *icol,Double_t *data) //
// where it is expected that the irow,icol and data array contain //
// nr entries . Only the entries with non-zero data[i] value are //
// inserted ! //
// 4. TMatrixDSparse a(n,m); for(....) { a(i,j) = .... //
// This is a very flexible method but expensive : //
// - if no entry for slot (i,j) is found in the sparse index table //
// it will be entered, which involves some memory management ! //
// - before invoking this method in a loop it is smart to first //
// set the index table through a call to SetSparseIndex(..) //
// 5. SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source) //
// the matrix to be inserted at position (row_lwb,col_lwb) can be //
// both dense or sparse . //
// //
//////////////////////////////////////////////////////////////////////////
#include "TMatrixDSparse.h"
#include "Riostream.h"
ClassImp(TMatrixDSparse)
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(Int_t no_rows,Int_t no_cols)
{
// Space is allocated for row/column indices and data, but the sparse structure
// information has still to be set !
Allocate(no_rows,no_cols,0,0,1);
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
{
// Space is allocated for row/column indices and data, but the sparse structure
// information has still to be set !
Allocate(row_upb-row_lwb+1,col_upb-col_lwb+1,row_lwb,col_lwb,1);
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr,Int_t *row, Int_t *col,Double_t *data)
{
// Space is allocated for row/column indices and data. Sparse row/column index
// structure together with data is coming from the arrays, row, col and data, resp .
const Int_t irowmin = TMath::LocMin(nr,row);
const Int_t irowmax = TMath::LocMax(nr,row);
const Int_t icolmin = TMath::LocMin(nr,col);
const Int_t icolmax = TMath::LocMax(nr,col);
Assert(row[irowmin] >= row_lwb && row[irowmax] <= row_upb);
Assert(col[icolmin] >= col_lwb && col[icolmax] <= col_upb);
Allocate(row_upb-row_lwb+1,col_upb-col_lwb+1,row_lwb,col_lwb,1,nr);
SetMatrixArray(nr,row,col,data);
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(const TMatrixDSparse &another) : TMatrixDBase(another)
{
Allocate(another.GetNrows(),another.GetNcols(),another.GetRowLwb(),another.GetColLwb(),1,
another.GetNoElements());
memcpy(fRowIndex,another.GetRowIndexArray(),fNrowIndex*sizeof(Int_t));
memcpy(fColIndex,another.GetColIndexArray(),fNelems*sizeof(Int_t));
*this = another;
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(const TMatrixD &another) : TMatrixDBase(another)
{
const Int_t nr_nonzeros = another.NonZeros();
Allocate(another.GetNrows(),another.GetNcols(),another.GetRowLwb(),another.GetColLwb(),1,nr_nonzeros);
SetSparseIndex(another);
*this = another;
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(EMatrixCreatorsOp1 op,const TMatrixDSparse &prototype)
{
// Create a matrix applying a specific operation to the prototype.
// Supported operations are: kZero, kUnit, kTransposed and kAtA
Assert(this != &prototype);
Invalidate();
Assert(prototype.IsValid());
Int_t nr_nonzeros = 0;
switch(op) {
case kZero:
Allocate(prototype.GetNrows(),prototype.GetNcols(),
prototype.GetRowLwb(),prototype.GetColLwb(),1,nr_nonzeros);
break;
case kUnit:
{
const Int_t nrows = prototype.GetNrows();
const Int_t ncols = prototype.GetNcols();
const Int_t rowLwb = prototype.GetRowLwb();
const Int_t colLwb = prototype.GetColLwb();
for (Int_t i = rowLwb; i <= rowLwb+nrows-1; i++)
for (Int_t j = colLwb; j <= colLwb+ncols-1; j++)
if (i==j) nr_nonzeros++;
Allocate(nrows,ncols,rowLwb,colLwb,1,nr_nonzeros);
UnitMatrix();
break;
}
case kTransposed:
Allocate(prototype.GetNcols(), prototype.GetNrows(),
prototype.GetColLwb(),prototype.GetRowLwb(),1,prototype.GetNoElements());
Transpose(prototype);
break;
case kAtA:
{
const TMatrixDSparse at(TMatrixDSparse::kTransposed,prototype);
AMultBt(at,at);
break;
}
default:
Error("TMatrixDSparse(EMatrixCreatorOp1)","operation %d not yet implemented", op);
}
}
//______________________________________________________________________________
TMatrixDSparse::TMatrixDSparse(const TMatrixDSparse &a,EMatrixCreatorsOp2 op,const TMatrixDSparse &b)
{
// Create a matrix applying a specific operation to two prototypes.
// Supported operations are: kMult (a*b), kMultTranspose (a*b'), kPlus (a+b), kMinus (a-b)
Invalidate();
Assert(a.IsValid());
Assert(b.IsValid());
switch(op) {
case kMult:
AMultB(a,b);
break;
case kMultTranspose:
AMultBt(a,b);
break;
case kPlus:
APlusB(a,b);
break;
case kMinus:
AMinusB(a,b);
break;
default:
Error("TMatrixDSparse(EMatrixCreatorOp2)", "operation %d not yet implemented",op);
}
}
//______________________________________________________________________________
void TMatrixDSparse::Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb,
Int_t init,Int_t nr_nonzeros)
{
// Allocate new matrix. Arguments are number of rows, columns, row lowerbound (0 default)
// and column lowerbound (0 default), 0 initialization flag and number of non-zero
// elements (only relevant for sparse format).
if ( (nr_nonzeros > 0 && (no_rows == 0 || no_cols == 0)) ||
(no_rows < 0 || no_cols < 0 || nr_nonzeros < 0) )
{
Error("Allocate","no_rows=%d no_cols=%d non_zeros=%d",no_rows,no_cols,nr_nonzeros);
Invalidate();
return;
}
MakeValid();
fNrows = no_rows;
fNcols = no_cols;
fRowLwb = row_lwb;
fColLwb = col_lwb;
fNrowIndex = fNrows+1;
fNelems = nr_nonzeros;
fIsOwner = kTRUE;
fTol = DBL_EPSILON;
fRowIndex = new Int_t[fNrowIndex];
if (init)
memset(fRowIndex,0,fNrowIndex*sizeof(Int_t));
if (fNelems > 0) {
fElements = new Double_t[fNelems];
fColIndex = new Int_t [fNelems];
if (init) {
memset(fElements,0,fNelems*sizeof(Double_t));
memset(fColIndex,0,fNelems*sizeof(Int_t));
}
} else {
fElements = 0;
fColIndex = 0;
}
}
//______________________________________________________________________________
void TMatrixDSparse::SetSparseIndexAB(const TMatrixDSparse &a,const TMatrixDSparse &b)
{
// Set the row/column indices to the "sum" of matrices a and b
// It is assumed that enough space was reserved
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("SetSparseIndexAB","matrices not compatible");
return;
}
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
Int_t nc = 0;
pRowIndexc[0] = 0;
for (Int_t irowc = 0; irowc < a.GetNrows(); irowc++) {
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
Int_t indexb = sIndexb;
for (Int_t indexa = sIndexa; indexa < eIndexa; indexa++) {
const Int_t icola = pColIndexa[indexa];
for (; indexb < eIndexb; indexb++) {
if (pColIndexb[indexb] >= icola) {
if (pColIndexb[indexb] == icola)
indexb++;
break;
}
pColIndexc[nc++] = pColIndexb[indexb];
}
pColIndexc[nc++] = pColIndexa[indexa];
}
while (indexb < eIndexb) {
if (pColIndexb[indexb++] > pColIndexa[eIndexa-1])
pColIndexc[nc++] = pColIndexb[indexb-1];
}
pRowIndexc[irowc+1] = nc;
}
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::InsertRow(Int_t rown,Int_t coln,const Double_t *v,Int_t n)
{
// Insert in row rown, n elements of array v at column coln
const Int_t arown = rown-fRowLwb;
const Int_t acoln = coln-fColLwb;
const Int_t nr = (n > 0) ? n : fNcols;
if (arown >= fNrows || arown < 0) {
Error("InsertRow","row %d out of matrix range",rown);
Invalidate();
return *this;
}
if (acoln >= fNcols || acoln < 0) {
Error("InsertRow","column %d out of matrix range",coln);
Invalidate();
return *this;
}
if (acoln+nr > fNcols || nr < 0) {
Error("InsertRow","row length %d out of range",nr);
Invalidate();
return *this;
}
const Int_t sIndex = fRowIndex[arown];
const Int_t eIndex = fRowIndex[arown+1];
// check first how many slots are available from [acoln,..,acoln+nr-1]
// also note lIndex and rIndex so that [sIndex..lIndex] and [rIndex..eIndex-1]
// contain the row entries except for the region to be inserted
Int_t nslots = 0;
Int_t lIndex = sIndex-1;
Int_t rIndex = sIndex-1;
Int_t index;
for (index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
rIndex++;
if (icol >= acoln+nr) break;
if (icol >= acoln) nslots++;
else lIndex++;
}
const Int_t nelems_old = fNelems;
const Int_t *colIndex_old = fColIndex;
const Double_t *elements_old = fElements;
const Int_t ndiff = nr-nslots;
fNelems += ndiff;
fColIndex = new Int_t[fNelems];
fElements = new Double_t[fNelems];
for (Int_t irow = arown+1; irow < fNrows+1; irow++)
fRowIndex[irow] += ndiff;
if (lIndex+1 > 0) {
memmove(fColIndex,colIndex_old,(lIndex+1)*sizeof(Int_t));
memmove(fElements,elements_old,(lIndex+1)*sizeof(Double_t));
}
if (nelems_old > 0 && nelems_old-rIndex > 0) {
memmove(fColIndex+rIndex+ndiff,colIndex_old+rIndex,(nelems_old-rIndex)*sizeof(Int_t));
memmove(fElements+rIndex+ndiff,elements_old+rIndex,(nelems_old-rIndex)*sizeof(Double_t));
}
index = lIndex+1;
for (Int_t i = 0; i < nr; i++) {
fColIndex[index] = acoln+i;
fElements[index] = v[i];
index++;
}
if (colIndex_old) delete [] (Int_t*) colIndex_old;
if (elements_old) delete [] (Double_t*) elements_old;
Assert(fNelems == fRowIndex[fNrowIndex-1]);
return *this;
}
//______________________________________________________________________________
void TMatrixDSparse::ExtractRow(Int_t rown, Int_t coln, Double_t *v,Int_t n) const
{
// Store in array v, n matrix elements of row rown starting at column coln
const Int_t arown = rown-fRowLwb;
const Int_t acoln = coln-fColLwb;
const Int_t nr = (n > 0) ? n : fNcols;
if (arown >= fNrows || arown < 0) {
Error("ExtractRow","row %d out of matrix range",rown);
return;
}
if (acoln >= fNcols || acoln < 0) {
Error("ExtractRow","column %d out of matrix range",coln);
return;
}
if (acoln+n >= fNcols || nr < 0) {
Error("ExtractRow","row length %d out of range",nr);
return;
}
const Int_t sIndex = fRowIndex[arown];
const Int_t eIndex = fRowIndex[arown+1];
memset(v,0,nr*sizeof(Double_t));
const Int_t * const pColIndex = GetColIndexArray();
const Double_t * const pData = GetMatrixArray();
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = pColIndex[index];
if (icol < acoln || icol >= acoln+n) continue;
v[icol-acoln] = pData[index];
}
}
//______________________________________________________________________________
void TMatrixDSparse::AMultBt(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
{
// General matrix multiplication. Create a matrix C such that C = A * B'.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNcols() != b.GetNcols() || a.GetColLwb() != b.GetColLwb()) {
Error("AMultBt","A and B columns incompatible");
Invalidate();
return;
}
if (this == &a) {
Error("AMultB","this = &a");
Invalidate();
return;
}
if (this == &b) {
Error("AMultB","this = &b");
Invalidate();
return;
}
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
Int_t *pRowIndexc;
Int_t *pColIndexc;
if (constr) {
// make a best guess of the sparse structure; it will guarantee
// enough allocated space !
Int_t nr_nonzero_rowa = 0;
{
for (Int_t irowa = 0; irowa < a.GetNrows(); irowa++)
if (pRowIndexa[irowa] < pRowIndexa[irowa+1])
nr_nonzero_rowa++;
}
Int_t nr_nonzero_rowb = 0;
{
for (Int_t irowb = 0; irowb < b.GetNrows(); irowb++)
if (pRowIndexb[irowb] < pRowIndexb[irowb+1])
nr_nonzero_rowb++;
}
Int_t nc = nr_nonzero_rowa*nr_nonzero_rowb; // best guess
Allocate(a.GetNrows(),b.GetNrows(),a.GetRowLwb(),b.GetRowLwb(),1,nc);
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
pRowIndexc[0] = 0;
Int_t ielem = 0;
for (Int_t irowa = 0; irowa < a.GetNrows(); irowa++) {
pRowIndexc[irowa+1] = pRowIndexc[irowa];
if (pRowIndexa[irowa] >= pRowIndexa[irowa+1]) continue;
for (Int_t irowb = 0; irowb < b.GetNrows(); irowb++) {
if (pRowIndexb[irowb] >= pRowIndexb[irowb+1]) continue;
pRowIndexc[irowa+1]++;
pColIndexc[ielem++] = irowb;
}
}
} else {
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
}
const Double_t * const pDataa = a.GetMatrixArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t shift = 0;
Int_t indexc_r = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
const Int_t sIndexb = pRowIndexb[icolc];
const Int_t eIndexb = pRowIndexb[icolc+1];
Double_t sum = 0.0;
Int_t indexb = sIndexb;
for (Int_t indexa = sIndexa; indexa < eIndexa && indexb < eIndexb; indexa++) {
const Int_t icola = pColIndexa[indexa];
while (indexb < eIndexb && pColIndexb[indexb] <= icola) {
if (icola == pColIndexb[indexb]) {
sum += pDataa[indexa]*pDatab[indexb];
break;
}
indexb++;
}
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::AMultBt(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
{
// General matrix multiplication. Create a matrix C such that C = A * B'.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNcols() != b.GetNcols() || a.GetColLwb() != b.GetColLwb()) {
Error("AMultBt","A and B columns incompatible");
Invalidate();
return;
}
if (this == &a) {
Error("AMultB","this = &a");
Invalidate();
return;
}
if (this == dynamic_cast<const TMatrixDSparse *>(&b)) {
Error("AMultB","this = &b");
Invalidate();
return;
}
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
Int_t *pRowIndexc;
Int_t *pColIndexc;
if (constr) {
// make a best guess of the sparse structure; it will guarantee
// enough allocated space !
Int_t nr_nonzero_rowa = 0;
{
for (Int_t irowa = 0; irowa < a.GetNrows(); irowa++)
if (pRowIndexa[irowa] < pRowIndexa[irowa+1])
nr_nonzero_rowa++;
}
Int_t nr_nonzero_rowb = b.GetNrows();
Int_t nc = nr_nonzero_rowa*nr_nonzero_rowb; // best guess
Allocate(a.GetNrows(),b.GetNrows(),a.GetRowLwb(),b.GetRowLwb(),1,nc);
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
pRowIndexc[0] = 0;
Int_t ielem = 0;
for (Int_t irowa = 0; irowa < a.GetNrows(); irowa++) {
pRowIndexc[irowa+1] = pRowIndexc[irowa];
for (Int_t irowb = 0; irowb < b.GetNrows(); irowb++) {
pRowIndexc[irowa+1]++;
pColIndexc[ielem++] = irowb;
}
}
} else {
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
}
const Double_t * const pDataa = a.GetMatrixArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
const Int_t off = icolc*b.GetNcols();
Double_t sum = 0.0;
for (Int_t indexa = sIndexa; indexa < eIndexa; indexa++) {
const Int_t icola = pColIndexa[indexa];
sum += pDataa[indexa]*pDatab[off+icola];
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::AMultBt(const TMatrixD &a,const TMatrixDSparse &b,Int_t constr)
{
// General matrix multiplication. Create a matrix C such that C = A * B'.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNcols() != b.GetNcols() || a.GetColLwb() != b.GetColLwb()) {
Error("AMultBt","A and B columns incompatible");
Invalidate();
return;
}
if (this == dynamic_cast<const TMatrixDSparse *>(&a)) {
Error("AMultB","this = &a");
Invalidate();
return;
}
if (this == &b) {
Error("AMultB","this = &b");
Invalidate();
return;
}
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
Int_t *pRowIndexc;
Int_t *pColIndexc;
if (constr) {
// make a best guess of the sparse structure; it will guarantee
// enough allocated space !
Int_t nr_nonzero_rowa = a.GetNrows();
Int_t nr_nonzero_rowb = 0;
{
for (Int_t irowb = 0; irowb < b.GetNrows(); irowb++)
if (pRowIndexb[irowb] < pRowIndexb[irowb+1])
nr_nonzero_rowb++;
}
Int_t nc = nr_nonzero_rowa*nr_nonzero_rowb; // best guess
Allocate(a.GetNrows(),b.GetNrows(),a.GetRowLwb(),b.GetRowLwb(),1,nc);
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
pRowIndexc[0] = 0;
Int_t ielem = 0;
for (Int_t irowa = 0; irowa < a.GetNrows(); irowa++) {
pRowIndexc[irowa+1] = pRowIndexc[irowa];
for (Int_t irowb = 0; irowb < b.GetNrows(); irowb++) {
if (pRowIndexb[irowb] >= pRowIndexb[irowb+1]) continue;
pRowIndexc[irowa+1]++;
pColIndexc[ielem++] = irowb;
}
}
} else {
pRowIndexc = this->GetRowIndexArray();
pColIndexc = this->GetColIndexArray();
}
const Double_t * const pDataa = a.GetMatrixArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t off = irowc*a.GetNcols();
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
const Int_t sIndexb = pRowIndexb[icolc];
const Int_t eIndexb = pRowIndexb[icolc+1];
Double_t sum = 0.0;
for (Int_t indexb = sIndexb; indexb < eIndexb; indexb++) {
const Int_t icolb = pColIndexb[indexb];
sum += pDataa[off+icolb]*pDatab[indexb];
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::APlusB(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
{
// General matrix addition. Create a matrix C such that C = A + B.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("APlusB(const TMatrixDSparse &,const TMatrixDSparse &","matrices not compatible");
return;
}
if (this == &a) {
Error("APlusB","this = &a");
Invalidate();
return;
}
if (this == &b) {
Error("APlusB","this = &b");
Invalidate();
return;
}
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
if (constr) {
Int_t nc = 0;
for (Int_t irowc = 0; irowc < a.GetNrows(); irowc++) {
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
nc += eIndexa-sIndexa;
Int_t indexb = sIndexb;
for (Int_t indexa = sIndexa; indexa < eIndexa; indexa++) {
const Int_t icola = pColIndexa[indexa];
for (; indexb < eIndexb; indexb++) {
if (pColIndexb[indexb] >= icola) {
if (pColIndexb[indexb] == icola)
indexb++;
break;
}
nc++;
}
}
while (indexb < eIndexb) {
if (pColIndexb[indexb++] > pColIndexa[eIndexa-1])
nc++;
}
}
Allocate(a.GetNrows(),a.GetNcols(),a.GetRowLwb(),a.GetColLwb(),1,nc);
SetSparseIndexAB(a,b);
}
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
const Double_t * const pDataa = a.GetMatrixArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
Int_t indexa = sIndexa;
Int_t indexb = sIndexb;
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
Double_t sum = 0.0;
while (indexa < eIndexa && pColIndexa[indexa] <= icolc) {
if (icolc == pColIndexa[indexa]) {
sum += pDataa[indexa];
break;
}
indexa++;
}
while (indexb < eIndexb && pColIndexb[indexb] <= icolc) {
if (icolc == pColIndexb[indexb]) {
sum += pDatab[indexb];
break;
}
indexb++;
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::APlusB(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
{
// General matrix addition. Create a matrix C such that C = A + B.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("APlusB(const TMatrixDSparse &,const TMatrixD &","matrices not compatible");
return;
}
if (this == &a) {
Error("APlusB","this = &a");
Invalidate();
return;
}
if (this == dynamic_cast<const TMatrixDSparse *>(&b)) {
Error("APlusB","this = &b");
Invalidate();
return;
}
if (constr)
*this = b;
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Double_t * const pDataa = a.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
Int_t indexa = sIndexa;
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
Double_t sum = pDatac[indexc];
while (indexa < eIndexa && pColIndexa[indexa] <= icolc) {
if (icolc == pColIndexa[indexa]) {
sum += pDataa[indexa];
break;
}
indexa++;
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::AMinusB(const TMatrixDSparse &a,const TMatrixDSparse &b,Int_t constr)
{
// General matrix subtraction. Create a matrix C such that C = A - B.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("AMinusB(const TMatrixDSparse &,const TMatrixDSparse &","matrices not compatible");
return;
}
if (this == &a) {
Error("AMinusB","this = &a");
Invalidate();
return;
}
if (this == &b) {
Error("AMinusB","this = &b");
Invalidate();
return;
}
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
if (constr) {
Int_t nc = 0;
for (Int_t irowc = 0; irowc < a.GetNrows(); irowc++) {
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
nc += eIndexa-sIndexa;
Int_t indexb = sIndexb;
for (Int_t indexa = sIndexa; indexa < eIndexa; indexa++) {
const Int_t icola = pColIndexa[indexa];
for (; indexb < eIndexb; indexb++) {
if (pColIndexb[indexb] >= icola) {
if (pColIndexb[indexb] == icola)
indexb++;
break;
}
nc++;
}
}
while (indexb < eIndexb) {
if (pColIndexb[indexb++] > pColIndexa[eIndexa-1])
nc++;
}
}
Allocate(a.GetNrows(),a.GetNcols(),a.GetRowLwb(),a.GetColLwb(),1,nc);
SetSparseIndexAB(a,b);
}
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
const Double_t * const pDataa = a.GetMatrixArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
Int_t indexa = sIndexa;
Int_t indexb = sIndexb;
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
Double_t sum = 0.0;
while (indexa < eIndexa && pColIndexa[indexa] <= icolc) {
if (icolc == pColIndexa[indexa]) {
sum += pDataa[indexa];
break;
}
indexa++;
}
while (indexb < eIndexb && pColIndexb[indexb] <= icolc) {
if (icolc == pColIndexb[indexb]) {
sum -= pDatab[indexb];
break;
}
indexb++;
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::AMinusB(const TMatrixDSparse &a,const TMatrixD &b,Int_t constr)
{
// General matrix subtraction. Create a matrix C such that C = A - B.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("AMinusB(const TMatrixDSparse &,const TMatrixD &","matrices not compatible");
return;
}
if (this == &a) {
Error("AMinusB","this = &a");
Invalidate();
return;
}
if (this == dynamic_cast<const TMatrixDSparse *>(&b)) {
Error("AMinusB","this = &b");
Invalidate();
return;
}
if (constr)
*this = b;
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
const Int_t * const pRowIndexa = a.GetRowIndexArray();
const Int_t * const pColIndexa = a.GetColIndexArray();
const Double_t * const pDataa = a.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexa = pRowIndexa[irowc];
const Int_t eIndexa = pRowIndexa[irowc+1];
Int_t indexa = sIndexa;
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
Double_t sum = -pDatac[indexc];
while (indexa < eIndexa && pColIndexa[indexa] <= icolc) {
if (icolc == pColIndexa[indexa]) {
sum += pDataa[indexa];
break;
}
indexa++;
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::AMinusB(const TMatrixD &a,const TMatrixDSparse &b,Int_t constr)
{
// General matrix subtraction. Create a matrix C such that C = A - B.
// Note, matrix C is allocated for constr=1.
Assert(a.IsValid());
Assert(b.IsValid());
if (a.GetNrows() != b.GetNrows() || a.GetNcols() != b.GetNcols() ||
a.GetRowLwb() != b.GetRowLwb() || a.GetColLwb() != b.GetColLwb()) {
Error("AMinusB(const TMatrixD &,const TMatrixDSparse &","matrices not compatible");
return;
}
if (this == dynamic_cast<const TMatrixDSparse *>(&a)) {
Error("AMinusB","this = &a");
Invalidate();
return;
}
if (this == &b) {
Error("AMinusB","this = &b");
Invalidate();
return;
}
if (constr)
*this = a;
Int_t * const pRowIndexc = this->GetRowIndexArray();
Int_t * const pColIndexc = this->GetColIndexArray();
const Int_t * const pRowIndexb = b.GetRowIndexArray();
const Int_t * const pColIndexb = b.GetColIndexArray();
const Double_t * const pDatab = b.GetMatrixArray();
Double_t * const pDatac = this->GetMatrixArray();
Int_t indexc_r = 0;
Int_t shift = 0;
for (Int_t irowc = 0; irowc < this->GetNrows(); irowc++) {
const Int_t sIndexc = pRowIndexc[irowc]+shift;
const Int_t eIndexc = pRowIndexc[irowc+1];
const Int_t sIndexb = pRowIndexb[irowc];
const Int_t eIndexb = pRowIndexb[irowc+1];
Int_t indexb = sIndexb;
for (Int_t indexc = sIndexc; indexc < eIndexc; indexc++) {
const Int_t icolc = pColIndexc[indexc];
Double_t sum = pDatac[indexc];
while (indexb < eIndexb && pColIndexb[indexb] <= icolc) {
if (icolc == pColIndexb[indexb]) {
sum -= pDatab[indexb];
break;
}
indexb++;
}
if (!constr)
pDatac[indexc] = sum;
else {
if (sum != 0.0) {
pRowIndexc[irowc+1] = indexc_r+1;
pColIndexc[indexc_r] = icolc;
pDatac[indexc_r] = sum;
indexc_r++;
} else
shift++;
}
}
}
if (constr)
SetSparseIndex(indexc_r);
}
//______________________________________________________________________________
void TMatrixDSparse::GetMatrix2Array(Double_t *data,Option_t * /*option*/) const
{
// Copy matrix data to array . It is assumed that array is of size >= fNelems
Assert(IsValid());
const Double_t * const elem = GetMatrixArray();
memcpy(data,elem,fNelems*sizeof(Double_t));
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::SetMatrixArray(Int_t nr,Int_t *row,Int_t *col,Double_t *data)
{
// Copy nr elements from row/col index and data array to matrix . It is assumed
// that arrays are of size >= nr
Assert(IsValid());
if (nr <= 0) {
Error("SetMatrixArray(Int_t,Int_t*,Int_t*,Double_t*","nr <= 0");
Invalidate();
return *this;
}
const Int_t irowmin = TMath::LocMin(nr,row);
const Int_t irowmax = TMath::LocMax(nr,row);
const Int_t icolmin = TMath::LocMin(nr,col);
const Int_t icolmax = TMath::LocMax(nr,col);
Assert(row[irowmin] >= fRowLwb && row[irowmax] <= fRowLwb+fNrows-1);
Assert(col[icolmin] >= fColLwb && col[icolmax] <= fColLwb+fNcols-1);
DoubleLexSort(nr,row,col,data);
Int_t nr_nonzeros = 0;
const Double_t *ep = data;
const Double_t * const fp = data+nr;
while (ep < fp)
if (*ep++ != 0.0) nr_nonzeros++;
// if nr_nonzeros != fNelems
if (nr_nonzeros != fNelems) {
if (fColIndex) { delete [] fColIndex; fColIndex = 0; }
if (fElements) { delete [] fElements; fElements = 0; }
fNelems = nr_nonzeros;
if (fNelems > 0) {
fColIndex = new Int_t[nr_nonzeros];
fElements = new Double_t[nr_nonzeros];
} else {
fColIndex = 0;
fElements = 0;
}
}
if (fNelems <= 0)
return *this;
fRowIndex[0] = 0;
Int_t ielem = 0;
nr_nonzeros = 0;
for (Int_t irow = 1; irow < fNrows+1; irow++) {
if (ielem < nr && row[ielem] < irow) {
while (ielem < nr) {
if (data[ielem] != 0.0) {
fColIndex[nr_nonzeros] = col[ielem]-fColLwb;
fElements[nr_nonzeros] = data[ielem];
nr_nonzeros++;
}
ielem++;
if (ielem >= nr || row[ielem] != row[ielem-1])
break;
}
}
fRowIndex[irow] = nr_nonzeros;
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::SetSparseIndex(const TMatrixDBase &source)
{
// Use non-zero data of matrix source to set the sparse structure
Assert(source.IsValid());
if (GetNrows() != source.GetNrows() || GetNcols() != source.GetNcols() ||
GetRowLwb() != source.GetRowLwb() || GetColLwb() != source.GetColLwb()) {
Error("SetSparseIndex","matrices not compatible");
Invalidate();
return *this;
}
const Int_t nr_nonzeros = source.NonZeros();
if (nr_nonzeros != fNelems)
SetSparseIndex(nr_nonzeros);
if (source.GetRowIndexArray() && source.GetColIndexArray()) {
memmove(fRowIndex,source.GetRowIndexArray(),fNrowIndex*sizeof(Int_t));
memmove(fColIndex,source.GetColIndexArray(),fNelems*sizeof(Int_t));
} else {
const Double_t *ep = source.GetMatrixArray();
Int_t nr = 0;
for (Int_t irow = 0; irow < fNrows; irow++) {
fRowIndex[irow] = nr;
for (Int_t icol = 0; icol < fNcols; icol++) {
if (*ep != 0.0) {
fColIndex[nr] = icol;
nr++;
}
ep++;
}
}
fRowIndex[fNrows] = nr;
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::SetSparseIndex(Int_t nelems_new)
{
// Increase/decrease the number of non-zero elements to nelems_new
if (nelems_new != fNelems) {
Int_t nr = TMath::Min(nelems_new,fNelems);
Int_t *oIp = fColIndex;
fColIndex = new Int_t[nelems_new];
memmove(fColIndex,oIp,nr*sizeof(Int_t));
if (oIp) delete [] oIp;
Double_t *oDp = fElements;
fElements = new Double_t[nelems_new];
memmove(fElements,oDp,nr*sizeof(Double_t));
if (oDp) delete [] oDp;
fNelems = nelems_new;
if (nelems_new > nr) {
memset(fElements+nr,0,(nelems_new-nr)*sizeof(Double_t));
memset(fColIndex+nr,0,(nelems_new-nr)*sizeof(Int_t));
} else {
for (Int_t irow = 0; irow < fNrowIndex; irow++)
if (fRowIndex[irow] > nelems_new)
fRowIndex[irow] = nelems_new;
}
}
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::ResizeTo(Int_t nrows,Int_t ncols,Int_t nr_nonzeros)
{
// Set size of the matrix to nrows x ncols with nr_nonzeros non-zero entries
// if nr_nonzeros > 0 .
// New dynamic elements are created, the overlapping part of the old ones are
// copied to the new structures, then the old elements are deleted.
Assert(IsValid());
if (!fIsOwner) {
Error("ResizeTo(Int_t,Int_t,Int_t)","Not owner of data array,cannot resize");
Invalidate();
return *this;
}
if (fNelems > 0) {
if (fNrows == nrows && fNcols == ncols &&
(fNelems == nr_nonzeros || nr_nonzeros < 0))
return *this;
else if (nrows == 0 || ncols == 0 || nr_nonzeros == 0) {
fNrows = nrows; fNcols = ncols;
Clear();
return *this;
}
const Double_t *elements_old = GetMatrixArray();
const Int_t *rowIndex_old = GetRowIndexArray();
const Int_t *colIndex_old = GetColIndexArray();
Int_t nrows_old = fNrows;
Int_t nrowIndex_old = fNrowIndex;
Int_t nelems_new;
if (nr_nonzeros > 0)
nelems_new = nr_nonzeros;
else {
nelems_new = 0;
for (Int_t irow = 0; irow < nrows_old; irow++) {
if (irow >= nrows) continue;
const Int_t sIndex = rowIndex_old[irow];
const Int_t eIndex = rowIndex_old[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = colIndex_old[index];
if (icol < ncols)
nelems_new++;
}
}
}
Allocate(nrows,ncols,0,0,1,nelems_new);
Assert(IsValid());
Double_t *elements_new = GetMatrixArray();
Int_t *rowIndex_new = GetRowIndexArray();
Int_t *colIndex_new = GetColIndexArray();
Int_t nelems_copy = 0;
rowIndex_new[0] = 0;
Bool_t cont = kTRUE;
for (Int_t irow = 0; irow < nrows_old && cont; irow++) {
if (irow >= nrows) continue;
const Int_t sIndex = rowIndex_old[irow];
const Int_t eIndex = rowIndex_old[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = colIndex_old[index];
if (icol < ncols) {
rowIndex_new[irow+1] = nelems_copy+1;
colIndex_new[nelems_copy] = icol;
elements_new[nelems_copy] = elements_old[index];
nelems_copy++;
}
if (nelems_copy >= nelems_new) {
cont = kFALSE;
break;
}
}
}
if (rowIndex_old) delete [] (Int_t*) rowIndex_old;
if (colIndex_old) delete [] (Int_t*) colIndex_old;
if (elements_old) delete [] (Double_t*) elements_old;
if (nrowIndex_old < fNrowIndex) {
for (Int_t irow = nrowIndex_old; irow < fNrowIndex; irow++)
rowIndex_new[irow] = rowIndex_new[nrowIndex_old-1];
}
} else {
const Int_t nelems_new = (nr_nonzeros >= 0) ? nr_nonzeros : 0;
Allocate(nrows,ncols,0,0,1,nelems_new);
}
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros)
{
// Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] with nr_nonzeros
// non-zero entries if nr_nonzeros > 0 .
// New dynamic elemenst are created, the overlapping part of the old ones are
// copied to the new structures, then the old elements are deleted.
Assert(IsValid());
if (!fIsOwner) {
Error("ResizeTo(Int_t,Int_t,Int_t,Int_t,Int_t)","Not owner of data array,cannot resize");
Invalidate();
return *this;
}
const Int_t new_nrows = row_upb-row_lwb+1;
const Int_t new_ncols = col_upb-col_lwb+1;
if (fNelems > 0) {
if (fNrows == new_nrows && fNcols == new_ncols &&
fRowLwb == row_lwb && fColLwb == col_lwb &&
(fNelems == nr_nonzeros || nr_nonzeros < 0))
return *this;
else if (new_nrows == 0 || new_ncols == 0 || nr_nonzeros == 0) {
fNrows = new_nrows; fNcols = new_ncols;
fRowLwb = row_lwb; fColLwb = col_lwb;
Clear();
return *this;
}
const Int_t *rowIndex_old = GetRowIndexArray();
const Int_t *colIndex_old = GetColIndexArray();
const Double_t *elements_old = GetMatrixArray();
const Int_t nrowIndex_old = fNrowIndex;
const Int_t nrows_old = fNrows;
const Int_t rowLwb_old = fRowLwb;
const Int_t colLwb_old = fColLwb;
Int_t nelems_new;
if (nr_nonzeros > 0)
nelems_new = nr_nonzeros;
else {
nelems_new = 0;
for (Int_t irow = 0; irow < nrows_old; irow++) {
if (irow+rowLwb_old > row_upb || irow+rowLwb_old < row_lwb) continue;
const Int_t sIndex = rowIndex_old[irow];
const Int_t eIndex = rowIndex_old[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = colIndex_old[index];
if (icol+colLwb_old <= col_upb && icol+colLwb_old >= col_lwb)
nelems_new++;
}
}
}
Allocate(new_nrows,new_ncols,row_lwb,col_lwb,1,nelems_new);
Assert(IsValid());
Int_t *rowIndex_new = GetRowIndexArray();
Int_t *colIndex_new = GetColIndexArray();
Double_t *elements_new = GetMatrixArray();
Int_t nelems_copy = 0;
rowIndex_new[0] = 0;
Bool_t cont = kTRUE;
const Int_t row_off = rowLwb_old-row_lwb;
const Int_t col_off = colLwb_old-col_lwb;
for (Int_t irow = 0; irow < nrows_old; irow++) {
if (irow+rowLwb_old > row_upb || irow+rowLwb_old < row_lwb) continue;
const Int_t sIndex = rowIndex_old[irow];
const Int_t eIndex = rowIndex_old[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = colIndex_old[index];
if (icol+colLwb_old <= col_upb && icol+colLwb_old >= col_lwb) {
rowIndex_new[irow+row_off+1] = nelems_copy+1;
colIndex_new[nelems_copy] = icol+col_off;
elements_new[nelems_copy] = elements_old[index];
nelems_copy++;
}
if (nelems_copy >= nelems_new) {
cont = kFALSE;
break;
}
}
}
if (rowIndex_old) delete [] (Int_t*) rowIndex_old;
if (colIndex_old) delete [] (Int_t*) colIndex_old;
if (elements_old) delete [] (Double_t*) elements_old;
if (nrowIndex_old < fNrowIndex) {
for (Int_t irow = nrowIndex_old; irow < fNrowIndex; irow++)
rowIndex_new[irow] = rowIndex_new[nrowIndex_old-1];
}
} else {
const Int_t nelems_new = (nr_nonzeros >= 0) ? nr_nonzeros : 0;
Allocate(new_nrows,new_ncols,row_lwb,col_lwb,1,nelems_new);
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::Use(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t nr_nonzeros,Int_t *pRowIndex,Int_t *pColIndex,Double_t *pData)
{
if (row_upb < row_lwb)
{
Error("Use","row_upb=%d < row_lwb=%d",row_upb,row_lwb);
Invalidate();
return *this;
}
if (col_upb < col_lwb)
{
Error("Use","col_upb=%d < col_lwb=%d",col_upb,col_lwb);
Invalidate();
return *this;
}
Clear();
fNrows = row_upb-row_lwb+1;
fNcols = col_upb-col_lwb+1;
fRowLwb = row_lwb;
fColLwb = col_lwb;
fNrowIndex = fNrows+1;
fNelems = nr_nonzeros;
fIsOwner = kFALSE;
fTol = DBL_EPSILON;
fElements = pData;
fRowIndex = pRowIndex;
fColIndex = pColIndex;
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
TMatrixDBase &target,Option_t *option) const
{
// Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the
// returned matrix depends on the argument option:
//
// option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default)
// else : return [row_lwb..row_upb][col_lwb..col_upb]
Assert(IsValid());
if (row_lwb < fRowLwb || row_lwb > fRowLwb+fNrows-1) {
Error("GetSub","row_lwb out-of-bounds");
target.Invalidate();
return target;
}
if (col_lwb < fColLwb || col_lwb > fColLwb+fNcols-1) {
Error("GetSub","col_lwb out-of-bounds");
target.Invalidate();
return target;
}
if (row_upb < fRowLwb || row_upb > fRowLwb+fNrows-1) {
Error("GetSub","row_upb out-of-bounds");
target.Invalidate();
return target;
}
if (col_upb < fColLwb || col_upb > fColLwb+fNcols-1) {
Error("GetSub","col_upb out-of-bounds");
target.Invalidate();
return target;
}
if (row_upb < row_lwb || col_upb < col_lwb) {
Error("GetSub","row_upb < row_lwb || col_upb < col_lwb");
target.Invalidate();
return target;
}
TString opt(option);
opt.ToUpper();
const Int_t shift = (opt.Contains("S")) ? 1 : 0;
const Int_t row_lwb_sub = (shift) ? 0 : row_lwb;
const Int_t row_upb_sub = (shift) ? row_upb-row_lwb : row_upb;
const Int_t col_lwb_sub = (shift) ? 0 : col_lwb;
const Int_t col_upb_sub = (shift) ? col_upb-col_lwb : col_upb;
Int_t nr_nonzeros = 0;
for (Int_t irow = 0; irow < fNrows; irow++) {
if (irow+fRowLwb > row_upb || irow+fRowLwb < row_lwb) continue;
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
if (icol+fColLwb <= col_upb && icol+fColLwb >= col_lwb)
nr_nonzeros++;
}
}
target.ResizeTo(row_lwb_sub,row_upb_sub,col_lwb_sub,col_upb_sub,nr_nonzeros);
const Double_t *ep = this->GetMatrixArray();
Int_t *rowIndex_sub = target.GetRowIndexArray();
Int_t *colIndex_sub = target.GetColIndexArray();
Double_t *ep_sub = target.GetMatrixArray();
if (target.GetRowIndexArray() && target.GetColIndexArray()) {
Int_t nelems_copy = 0;
rowIndex_sub[0] = 0;
const Int_t row_off = fRowLwb-row_lwb;
const Int_t col_off = fColLwb-col_lwb;
for (Int_t irow = 0; irow < fNrows; irow++) {
if (irow+fRowLwb > row_upb || irow+fRowLwb < row_lwb) continue;
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
if (icol+fColLwb <= col_upb && icol+fColLwb >= col_lwb) {
rowIndex_sub[irow+row_off+1] = nelems_copy+1;
colIndex_sub[nelems_copy] = icol+col_off;
ep_sub[nelems_copy] = ep[index];
nelems_copy++;
}
}
}
} else {
const Int_t row_off = fRowLwb-row_lwb;
const Int_t col_off = fColLwb-col_lwb;
const Int_t ncols_sub = col_upb_sub-col_lwb_sub+1;
for (Int_t irow = 0; irow < fNrows; irow++) {
if (irow+fRowLwb > row_upb || irow+fRowLwb < row_lwb) continue;
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
const Int_t off = (irow+row_off)*ncols_sub;
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
if (icol+fColLwb <= col_upb && icol+fColLwb >= col_lwb)
ep_sub[off+icol+col_off] = ep[index];
}
}
}
return target;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
{
// Insert matrix source starting at [row_lwb][col_lwb], thereby overwriting the part
// [row_lwb..row_lwb+nrows_source-1][col_lwb..col_lwb+ncols_source-1];
Assert(IsValid());
Assert(source.IsValid());
if (row_lwb < fRowLwb || row_lwb > fRowLwb+fNrows-1) {
Error("SetSub","row_lwb out-of-bounds");
Invalidate();
return *this;
}
if (col_lwb < fColLwb || col_lwb > fColLwb+fNcols-1) {
Error("SetSub","col_lwb out-of-bounds");
Invalidate();
return *this;
}
const Int_t nRows_source = source.GetNrows();
const Int_t nCols_source = source.GetNcols();
if (row_lwb+nRows_source > fRowLwb+fNrows || col_lwb+nCols_source > fColLwb+fNcols) {
Error("SetSub","source matrix too large");
Invalidate();
return *this;
}
// Determine how many non-zero's are already available in
// [row_lwb..row_lwb+nrows_source-1][col_lwb..col_lwb+ncols_source-1]
Int_t nr_nonzeros = 0;
Int_t irow,index;
for (irow = 0; irow < fNrows; irow++) {
if (irow+fRowLwb >= row_lwb+nRows_source || irow+fRowLwb < row_lwb) continue;
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
if (icol+fColLwb < col_lwb+nCols_source && icol+fColLwb >= col_lwb)
nr_nonzeros++;
}
}
const Int_t *rowIndex_s = source.GetRowIndexArray();
const Int_t *colIndex_s = source.GetColIndexArray();
const Double_t *elements_s = source.GetMatrixArray();
const Int_t nelems_old = fNelems;
const Int_t *rowIndex_old = GetRowIndexArray();
const Int_t *colIndex_old = GetColIndexArray();
const Double_t *elements_old = GetMatrixArray();
const Int_t nelems_new = nelems_old+source.NonZeros()-nr_nonzeros;
fRowIndex = new Int_t[fNrowIndex];
fColIndex = new Int_t[nelems_new];
fElements = new Double_t[nelems_new];
fNelems = nelems_new;
Int_t *rowIndex_new = GetRowIndexArray();
Int_t *colIndex_new = GetColIndexArray();
Double_t *elements_new = GetMatrixArray();
const Int_t row_off = row_lwb-fRowLwb;
const Int_t col_off = col_lwb-fColLwb;
Int_t nr = 0;
rowIndex_new[0] = 0;
for (irow = 0; irow < fNrows; irow++) {
rowIndex_new[irow+1] = rowIndex_new[irow];
Bool_t flagRow = kFALSE;
if (irow+fRowLwb < row_lwb+nRows_source && irow+fRowLwb >= row_lwb)
flagRow = kTRUE;
const Int_t sIndex_o = rowIndex_old[irow];
const Int_t eIndex_o = rowIndex_old[irow+1];
if (flagRow) {
const Int_t icol_left = col_off-1;
const Int_t left = TMath::BinarySearch(eIndex_o-sIndex_o,colIndex_old+sIndex_o,icol_left)+sIndex_o;
for (index = sIndex_o; index <= left; index++) {
rowIndex_new[irow+1]++;
colIndex_new[nr] = colIndex_old[index];
elements_new[nr] = elements_old[index];
nr++;
}
if (rowIndex_s && colIndex_s) {
const Int_t sIndex_s = rowIndex_s[irow-row_off];
const Int_t eIndex_s = rowIndex_s[irow-row_off+1];
for (index = sIndex_s; index < eIndex_s; index++) {
rowIndex_new[irow+1]++;
colIndex_new[nr] = colIndex_s[index]+col_off;
elements_new[nr] = elements_s[index];
nr++;
}
} else {
const Int_t off = (irow-row_off)*nCols_source;
for (Int_t icol = 0; icol < nCols_source; icol++) {
rowIndex_new[irow+1]++;
colIndex_new[nr] = icol+col_off;
elements_new[nr] = elements_s[off+icol];
nr++;
}
}
const Int_t icol_right = col_off+nCols_source-1;
if (colIndex_old) {
Int_t right = TMath::BinarySearch(eIndex_o-sIndex_o,colIndex_old+sIndex_o,icol_right)+sIndex_o;
while (right < eIndex_o-1 && colIndex_old[right+1] <= icol_right)
right++;
right++;
for (index = right; index < eIndex_o; index++) {
rowIndex_new[irow+1]++;
colIndex_new[nr] = colIndex_old[index];
elements_new[nr] = elements_old[index];
nr++;
}
}
} else {
for (index = sIndex_o; index < eIndex_o; index++) {
rowIndex_new[irow+1]++;
colIndex_new[nr] = colIndex_old[index];
elements_new[nr] = elements_old[index];
nr++;
}
}
}
Assert(fNelems == fRowIndex[fNrowIndex-1]);
if (rowIndex_old) delete [] (Int_t*) rowIndex_old;
if (colIndex_old) delete [] (Int_t*) colIndex_old;
if (elements_old) delete [] (Double_t*) elements_old;
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::Transpose(const TMatrixDSparse &source)
{
// Transpose a matrix.
Assert(IsValid());
Assert(source.IsValid());
if (fNrows != source.GetNcols() || fNcols != source.GetNrows() ||
fRowLwb != source.GetColLwb() || fColLwb != source.GetRowLwb())
{
Error("Transpose","matrix has wrong shape");
Invalidate();
return *this;
}
const Int_t nr_nonzeros = source.NonZeros();
if (nr_nonzeros <= 0)
return *this;
const Int_t * const pRowIndex_s = source.GetRowIndexArray();
const Int_t * const pColIndex_s = source.GetColIndexArray();
const Double_t * const pData_s = source.GetMatrixArray();
Int_t *rownr = new Int_t[nr_nonzeros];
Int_t *colnr = new Int_t[nr_nonzeros];
Double_t *pData_t = new Double_t[nr_nonzeros];
Int_t ielem = 0;
for (Int_t irow_s = 0; irow_s < source.GetNrows(); irow_s++) {
const Int_t sIndex = pRowIndex_s[irow_s];
const Int_t eIndex = pRowIndex_s[irow_s+1];
for (Int_t index = sIndex; index < eIndex; index++) {
if (pData_s[index] != 0.0) {
rownr[ielem] = pColIndex_s[index]+fRowLwb;
colnr[ielem] = irow_s+fColLwb;
pData_t[ielem] = pData_s[index];
ielem++;
}
}
}
Assert(nr_nonzeros == ielem);
DoubleLexSort(nr_nonzeros,rownr,colnr,pData_t);
SetMatrixArray(nr_nonzeros,rownr,colnr,pData_t);
Assert(fNelems == fRowIndex[fNrowIndex-1]);
if (pData_t) delete [] pData_t;
if (rownr) delete [] rownr;
if (colnr) delete [] colnr;
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::Zero()
{
Assert(IsValid());
if (fElements) { delete [] fElements; fElements = 0; }
if (fColIndex) { delete [] fColIndex; fColIndex = 0; }
fNelems = 0;
memset(this->GetRowIndexArray(),0,fNrowIndex*sizeof(Int_t));
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::UnitMatrix()
{
// Make a unit matrix (matrix need not be a square one).
Assert(IsValid());
Int_t i;
Int_t nr_nonzeros = 0;
for (i = fRowLwb; i <= fRowLwb+fNrows-1; i++)
for (Int_t j = fColLwb; j <= fColLwb+fNcols-1; j++)
if (i == j) nr_nonzeros++;
if (nr_nonzeros != fNelems) {
fNelems = nr_nonzeros;
Int_t *oIp = fColIndex;
fColIndex = new Int_t[nr_nonzeros];
if (oIp) delete [] oIp;
Double_t *oDp = fElements;
fElements = new Double_t[nr_nonzeros];
if (oDp) delete [] oDp;
}
Int_t ielem = 0;
fRowIndex[0] = 0;
for (i = fRowLwb; i <= fRowLwb+fNrows-1; i++) {
for (Int_t j = fColLwb; j <= fColLwb+fNcols-1; j++) {
if (i == j) {
const Int_t irow = i-fRowLwb;
fRowIndex[irow+1] = ielem+1;
fElements[ielem] = 1.0;
fColIndex[ielem++] = j-fColLwb;
}
}
}
return *this;
}
//______________________________________________________________________________
Double_t TMatrixDSparse::RowNorm() const
{
// Row matrix norm, MAX{ SUM{ |M(i,j)|, over j}, over i}.
// The norm is induced by the infinity vector norm.
Assert(IsValid());
const Double_t * ep = GetMatrixArray();
const Double_t * const fp = ep+fNelems;
const Int_t * const pR = GetRowIndexArray();
Double_t norm = 0;
// Scan the matrix row-after-row
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t sIndex = pR[irow];
const Int_t eIndex = pR[irow+1];
Double_t sum = 0;
for (Int_t index = sIndex; index < eIndex; index++)
sum += TMath::Abs(*ep++);
norm = TMath::Max(norm,sum);
}
Assert(ep == fp);
return norm;
}
//______________________________________________________________________________
Double_t TMatrixDSparse::ColNorm() const
{
// Column matrix norm, MAX{ SUM{ |M(i,j)|, over i}, over j}.
// The norm is induced by the 1 vector norm.
Assert(IsValid());
const TMatrixDSparse mt(kTransposed,*this);
const Double_t * ep = mt.GetMatrixArray();
const Double_t * const fp = ep+fNcols;
Double_t norm = 0;
// Scan the matrix col-after-col
while (ep < fp) {
Double_t sum = 0;
// Scan a col to compute the sum
for (Int_t i = 0; i < fNrows; i++,ep += fNcols)
sum += TMath::Abs(*ep);
ep -= fNelems-1; // Point ep to the beginning of the next col
norm = TMath::Max(norm,sum);
}
Assert(ep == fp);
return norm;
}
//______________________________________________________________________________
Double_t &TMatrixDSparse::operator()(Int_t rown,Int_t coln)
{
Assert(IsValid());
const Int_t arown = rown-fRowLwb;
const Int_t acoln = coln-fColLwb;
Assert(arown < fNrows && arown >= 0);
Assert(acoln < fNcols && acoln >= 0);
Int_t index = -1;
Int_t sIndex = 0;
Int_t eIndex = 0;
if (fNrowIndex > 0 && fRowIndex[fNrowIndex-1] != 0) {
sIndex = fRowIndex[arown];
eIndex = fRowIndex[arown+1];
index = TMath::BinarySearch(eIndex-sIndex,fColIndex+sIndex,acoln)+sIndex;
}
if (index >= sIndex && fColIndex[index] == acoln)
return fElements[index];
else {
Double_t val = 0.;
InsertRow(rown,coln,&val,1);
sIndex = fRowIndex[arown];
eIndex = fRowIndex[arown+1];
index = TMath::BinarySearch(eIndex-sIndex,fColIndex+sIndex,acoln)+sIndex;
if (index >= sIndex && fColIndex[index] == acoln)
return fElements[index];
else {
Error("operator()(Int_t,Int_t","Insert row failed");
Assert(0);
return fElements[0];
}
}
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator=(const TMatrixDSparse &source)
{
// Notice that the sparsity of the matrix is NOT changed : its fRowIndex/fColIndex
// are used !
if (!AreCompatible(*this,source)) {
Error("operator=(const TMatrixDSparse &)","matrices not compatible");
Invalidate();
return *this;
}
if (this != &source) {
TObject::operator=(source);
const Double_t * const sp = source.GetMatrixArray();
Double_t * const tp = this->GetMatrixArray();
memcpy(tp,sp,fNelems*sizeof(Double_t));
fTol = source.GetTol();
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator=(const TMatrixD &source)
{
// Notice that the sparsity of the matrix is NOT changed : its fRowIndex/fColIndex
// are used !
if (!AreCompatible(*this,(TMatrixDBase &)source)) {
Error("operator=(const TMatrixD &)","matrices not compatible");
Invalidate();
return *this;
}
if (this != (TMatrixDSparse *)&source) {
TObject::operator=(source);
const Double_t * const sp = source.GetMatrixArray();
Double_t * const tp = this->GetMatrixArray();
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t sIndex = fRowIndex[irow];
const Int_t eIndex = fRowIndex[irow+1];
const Int_t off = irow*fNcols;
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = fColIndex[index];
tp[index] = sp[off+icol];
}
}
fTol = source.GetTol();
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator=(Double_t val)
{
// Assign val to every element of the matrix. Check that the row/col
// indices are set !
Assert(IsValid());
if (fRowIndex[fNrowIndex-1] == 0) {
Error("operator=(Double_t","row/col indices are not set");
Invalidate();
return *this;
}
Double_t *ep = this->GetMatrixArray();
const Double_t * const ep_last = ep+fNelems;
while (ep < ep_last)
*ep++ = val;
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator+=(Double_t val)
{
// Add val to every element of the matrix.
Assert(IsValid());
Double_t *ep = this->GetMatrixArray();
const Double_t * const ep_last = ep+fNelems;
while (ep < ep_last)
*ep++ += val;
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator-=(Double_t val)
{
// Subtract val from every element of the matrix.
Assert(IsValid());
Double_t *ep = this->GetMatrixArray();
const Double_t * const ep_last = ep+fNelems;
while (ep < ep_last)
*ep++ -= val;
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::operator*=(Double_t val)
{
// Multiply every element of the matrix with val.
Assert(IsValid());
Double_t *ep = this->GetMatrixArray();
const Double_t * const ep_last = ep+fNelems;
while (ep < ep_last)
*ep++ *= val;
return *this;
}
//______________________________________________________________________________
TMatrixDBase &TMatrixDSparse::Randomize(Double_t alpha,Double_t beta,Double_t &seed)
{
// randomize matrix element values
Assert(IsValid());
const Double_t scale = beta-alpha;
const Double_t shift = alpha/scale;
Int_t * const pRowIndex = GetRowIndexArray();
Int_t * const pColIndex = GetColIndexArray();
Double_t * const ep = GetMatrixArray();
const Int_t m = GetNrows();
const Int_t n = GetNcols();
// Knuth's algorithm for choosing "length" elements out of NN .
const Int_t NN = GetNrows()*GetNcols();
const Int_t length = (GetNoElements() <= NN) ? GetNoElements() : NN;
Int_t chosen = 0;
Int_t icurrent = 0;
pRowIndex[0] = 0;
for (Int_t k = 0; k < NN; k++) {
const Double_t r = Drand(seed);
if ((NN-k)*r < length-chosen) {
pColIndex[chosen] = k%n;
const Int_t irow = k/n;
if (irow > icurrent) {
for ( ; icurrent < irow; icurrent++)
pRowIndex[icurrent+1] = chosen;
}
ep[chosen] = scale*(Drand(seed)+shift);
chosen++;
}
}
for ( ; icurrent < m; icurrent++)
pRowIndex[icurrent+1] = length;
Assert(chosen == length);
return *this;
}
//______________________________________________________________________________
TMatrixDSparse &TMatrixDSparse::RandomizePD(Double_t alpha,Double_t beta,Double_t &seed)
{
// randomize matrix element values but keep matrix symmetric positive definite
Assert(IsValid());
const Double_t scale = beta-alpha;
const Double_t shift = alpha/scale;
if (fNrows != fNcols || fRowLwb != fColLwb) {
Error("RandomizePD(Double_t &","matrix should be square");
Invalidate();
return *this;
}
const Int_t n = fNcols;
Int_t * const pRowIndex = GetRowIndexArray();
Int_t * const pColIndex = GetColIndexArray();
Double_t * const ep = GetMatrixArray();
// We will always have non-zeros on the diagonal, so there
// is no randomness there. In fact, choose the (0,0) element now
pRowIndex[0] = 0;
pColIndex[0] = 0;
pRowIndex[1] = 1;
ep[0] = 1e-8+scale*(Drand(seed)+shift);
// Knuth's algorithm for choosing length elements out of NN .
// NN here is the number of elements in the strict lower triangle.
const Int_t NN = n*(n-1)/2;
// length is the number of elements that can be stored, minus the number
// of elements in the diagonal, which will always be in the matrix.
// Int_t length = (fNelems-n)/2;
Int_t length = fNelems-n;
length = (length <= NN) ? length : NN;
// chosen : the number of elements that have already been chosen (now 0)
// nnz : the number of non-zeros in the matrix (now 1, because the
// (0,0) element is already in the matrix.
// icurrent : the index of the last row whose start has been stored in pRowIndex;
Int_t chosen = 0;
Int_t icurrent = 1;
Int_t nnz = 1;
for (Int_t k = 0; k < NN; k++ ) {
const Double_t r = Drand(seed);
if( (NN-k)*r < length-chosen) {
// Element k is chosen. What row is it in?
// In a lower triangular matrix (including a diagonal), it will be in
// the largest row such that row*(row+1)/2 < k. In other words
Int_t row = (int) TMath::Floor((-1+TMath::Sqrt(1.0+8.0*k))/2);
// and its column will be the remainder
Int_t col = k-row*(row+1)/2;
// but since we are only filling in the *strict* lower triangle of
// the matrix, we shift the row by 1
row++;
if (row > icurrent) {
// We have chosen a row beyond the current row.
// Choose a diagonal element for each intermediate row and fix the
// data structure.
for ( ; icurrent < row; icurrent++) {
// Choose the diagonal
ep[nnz] = 0.0;
for (Int_t ll = pRowIndex[icurrent]; ll < nnz; ll++)
ep[nnz] += TMath::Abs(ep[ll]);
ep[nnz] += 1e-8+scale*(Drand(seed)+shift);
pColIndex[nnz] = icurrent;
nnz++;
pRowIndex[icurrent+1] = nnz;
}
} // end if we have chosen a row beyond the current row;
ep[nnz] = scale*(Drand(seed)+shift);
pColIndex[nnz] = col;
// add the value of this element (which occurs symmetrically in the
// upper triangle) to the appropriate diagonal element
ep[pRowIndex[col+1]-1] += TMath::Abs(ep[nnz]);
nnz++; // We have added another element to the matrix
chosen++; // And finished choosing another element.
}
}
Assert(chosen == length);
// and of course, we must choose all remaining diagonal elements .
for ( ; icurrent < n; icurrent++) {
// Choose the diagonal
ep[nnz] = 0.0;
for(Int_t ll = pRowIndex[icurrent]; ll < nnz; ll++)
ep[nnz] += TMath::Abs(ep[ll]);
ep[nnz] += 1e-8+scale*(Drand(seed)+shift);
pColIndex[nnz] = icurrent;
nnz++;
pRowIndex[icurrent+1] = nnz;
}
fNelems = nnz;
TMatrixDSparse tmp(TMatrixDSparse::kTransposed,*this);
*this += tmp;
// make sure to divide the diagonal by 2 becuase the operation
// *this += tmp; adds the diagonal again
{
const Int_t * const pR = GetRowIndexArray();
const Int_t * const pC = GetColIndexArray();
Double_t * const pD = GetMatrixArray();
for (Int_t irow = 0; irow < fNrows+1; irow++) {
const Int_t sIndex = pR[irow];
const Int_t eIndex = pR[irow+1];
for (Int_t index = sIndex; index < eIndex; index++) {
const Int_t icol = pC[index];
if (irow == icol)
pD[index] /= 2.;
}
}
}
return *this;
}
//______________________________________________________________________________
TMatrixDSparse operator+(const TMatrixDSparse &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kPlus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator+(const TMatrixDSparse &source1,const TMatrixD &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kPlus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator+(const TMatrixD &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kPlus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator+(const TMatrixDSparse &source,Double_t val)
{
TMatrixDSparse target(source);
target += val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator+(Double_t val,const TMatrixDSparse &source)
{
TMatrixDSparse target(source);
target += val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator-(const TMatrixDSparse &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMinus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator-(const TMatrixDSparse &source1,const TMatrixD &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMinus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator-(const TMatrixD &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMinus,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator-(const TMatrixDSparse &source,Double_t val)
{
TMatrixDSparse target(source);
target -= val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator-(Double_t val,const TMatrixDSparse &source)
{
TMatrixDSparse target(source);
target -= val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator*(const TMatrixDSparse &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMult,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator*(const TMatrixDSparse &source1,const TMatrixD &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMult,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator*(const TMatrixD &source1,const TMatrixDSparse &source2)
{
TMatrixDSparse target(source1,TMatrixDSparse::kMult,source2);
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator*(Double_t val,const TMatrixDSparse &source)
{
TMatrixDSparse target(source);
target *= val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse operator*(const TMatrixDSparse &source,Double_t val)
{
TMatrixDSparse target(source);
target *= val;
return target;
}
//______________________________________________________________________________
TMatrixDSparse &Add(TMatrixDSparse &target,Double_t scalar,const TMatrixDSparse &source)
{
// Modify addition: target += scalar * source.
target += scalar * source;
return target;
}
//______________________________________________________________________________
TMatrixDSparse &ElementMult(TMatrixDSparse &target,const TMatrixDSparse &source)
{
// Multiply target by the source, element-by-element.
if (!AreCompatible(target,source)) {
::Error("ElementMult(TMatrixDSparse &,const TMatrixDSparse &)","matrices not compatible");
target.Invalidate();
return target;
}
const Double_t *sp = source.GetMatrixArray();
Double_t *tp = target.GetMatrixArray();
const Double_t *ftp = tp+target.GetNoElements();
while ( tp < ftp )
*tp++ *= *sp++;
return target;
}
//______________________________________________________________________________
TMatrixDSparse &ElementDiv (TMatrixDSparse &target,const TMatrixDSparse &source)
{
// Divide target by the source, element-by-element.
if (!AreCompatible(target,source)) {
::Error("ElementDiv(TMatrixD &,const TMatrixD &)","matrices not compatible");
target.Invalidate();
return target;
}
const Double_t *sp = source.GetMatrixArray();
Double_t *tp = target.GetMatrixArray();
const Double_t *ftp = tp+target.GetNoElements();
while ( tp < ftp ) {
Assert(*sp != 0.0);
*tp++ /= *sp++;
}
return target;
}
//______________________________________________________________________________
Bool_t AreCompatible(const TMatrixDSparse &m1,const TMatrixDSparse &m2,Int_t verbose)
{
if (!m1.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 1 not valid");
return kFALSE;
}
if (!m2.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 2 not valid");
return kFALSE;
}
if (m1.GetNrows() != m2.GetNrows() || m1.GetNcols() != m2.GetNcols() ||
m1.GetRowLwb() != m2.GetRowLwb() || m1.GetColLwb() != m2.GetColLwb()) {
if (verbose)
::Error("AreCompatible", "matrices 1 and 2 not compatible");
return kFALSE;
}
const Int_t *pR1 = m1.GetRowIndexArray();
const Int_t *pR2 = m2.GetRowIndexArray();
const Int_t nRows = m1.GetNrows();
if (memcmp(pR1,pR2,(nRows+1)*sizeof(Int_t))) {
if (verbose)
::Error("AreCompatible", "matrices 1 and 2 have different rowIndex");
for (Int_t i = 0; i < nRows+1; i++)
printf("%d: %d %d\n",i,pR1[i],pR2[i]);
return kFALSE;
}
const Int_t *pD1 = m1.GetColIndexArray();
const Int_t *pD2 = m2.GetColIndexArray();
const Int_t nData = m1.GetNoElements();
if (memcmp(pD1,pD2,nData*sizeof(Int_t))) {
if (verbose)
::Error("AreCompatible", "matrices 1 and 2 have different colIndex");
for (Int_t i = 0; i < nData; i++)
printf("%d: %d %d\n",i,pD1[i],pD2[i]);
return kFALSE;
}
return kTRUE;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.