// @(#)root/hist:$Name: $:$Id: TH3.cxx,v 1.47 2004/05/24 15:39:35 brun Exp $
// Author: Rene Brun 27/10/95
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TH3.h"
#include "TH2.h"
#include "TF1.h"
#include "TVirtualPad.h"
#include "THLimitsFinder.h"
#include "TRandom.h"
#include "TFile.h"
ClassImp(TH3)
//______________________________________________________________________________
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*
//*-* The 3-D histogram classes derived from the 1-D histogram classes.
//*-* all operations are supported (fill, fit).
//*-* Drawing is currently restricted to one single option.
//*-* A cloud of points is drawn. The number of points is proportional to
//*-* cell content.
//*-*
//
// TH3C a 3-D histogram with one byte per cell (char)
// TH3S a 3-D histogram with two bytes per cell (short integer)
// TH3I a 3-D histogram with four bytes per cell (32 bits integer)
// TH3F a 3-D histogram with four bytes per cell (float)
// TH3D a 3-D histogram with eight bytes per cell (double)
//
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//______________________________________________________________________________
TH3::TH3()
{
fDimension = 3;
fTsumwy = fTsumwy2 = fTsumwxy = 0;
fTsumwz = fTsumwz2 = fTsumwxz = fTsumwyz = 0;
SetBinsLength(27);
}
//______________________________________________________________________________
TH3::TH3(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH1(name,title,nbinsx,xlow,xup),
TAtt3D()
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
fDimension = 3;
if (nbinsy <= 0) nbinsy = 1;
if (nbinsz <= 0) nbinsz = 1;
fYaxis.Set(nbinsy,ylow,yup);
fZaxis.Set(nbinsz,zlow,zup);
fNcells = (nbinsx+2)*(nbinsy+2)*(nbinsz+2);
fTsumwy = fTsumwy2 = fTsumwxy = 0;
fTsumwz = fTsumwz2 = fTsumwxz = fTsumwyz = 0;
}
//______________________________________________________________________________
TH3::TH3(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH1(name,title,nbinsx,xbins),
TAtt3D()
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
fDimension = 3;
if (nbinsy <= 0) nbinsy = 1;
if (nbinsz <= 0) nbinsz = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
if (zbins) fZaxis.Set(nbinsz,zbins);
else fZaxis.Set(nbinsz,0,1);
fNcells = (nbinsx+2)*(nbinsy+2)*(nbinsz+2);
fTsumwy = fTsumwy2 = fTsumwxy = 0;
fTsumwz = fTsumwz2 = fTsumwxz = fTsumwyz = 0;
}
//______________________________________________________________________________
TH3::TH3(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH1(name,title,nbinsx,xbins),
TAtt3D()
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
fDimension = 3;
if (nbinsy <= 0) nbinsy = 1;
if (nbinsz <= 0) nbinsz = 1;
if (ybins) fYaxis.Set(nbinsy,ybins);
else fYaxis.Set(nbinsy,0,1);
if (zbins) fZaxis.Set(nbinsz,zbins);
else fZaxis.Set(nbinsz,0,1);
fNcells = (nbinsx+2)*(nbinsy+2)*(nbinsz+2);
fTsumwy = fTsumwy2 = fTsumwxy = 0;
fTsumwz = fTsumwz2 = fTsumwxz = fTsumwyz = 0;
}
//______________________________________________________________________________
TH3::TH3(const TH3 &h) : TH1(), TAtt3D()
{
// Copy constructor.
// The list of functions is not copied. (Use Clone if needed)
Copy((TObject&)h);
}
//______________________________________________________________________________
TH3::~TH3()
{
}
//______________________________________________________________________________
void TH3::Copy(TObject &obj) const
{
TH1::Copy(obj);
((TH3&)obj).fTsumwy = fTsumwy;
((TH3&)obj).fTsumwy2 = fTsumwy2;
((TH3&)obj).fTsumwxy = fTsumwxy;
((TH3&)obj).fTsumwz = fTsumwz;
((TH3&)obj).fTsumwz2 = fTsumwz2;
((TH3&)obj).fTsumwxz = fTsumwxz;
((TH3&)obj).fTsumwyz = fTsumwyz;
}
//______________________________________________________________________________
Int_t TH3::BufferEmpty(Bool_t deleteBuffer)
{
// Fill histogram with all entries in the buffer.
// do we need to compute the bin size?
Int_t nbentries = (Int_t)fBuffer[0];
if (!nbentries) return 0;
if (fXaxis.GetXmax() <= fXaxis.GetXmin() ||
fYaxis.GetXmax() <= fYaxis.GetXmin() ||
fZaxis.GetXmax() <= fZaxis.GetXmin()) {
//find min, max of entries in buffer
Double_t xmin = fBuffer[2];
Double_t xmax = xmin;
Double_t ymin = fBuffer[3];
Double_t ymax = ymin;
Double_t zmin = fBuffer[4];
Double_t zmax = zmin;
for (Int_t i=1;i<nbentries;i++) {
Double_t x = fBuffer[4*i+2];
if (x < xmin) xmin = x;
if (x > xmax) xmax = x;
Double_t y = fBuffer[4*i+3];
if (y < ymin) ymin = y;
if (y > ymax) ymax = y;
Double_t z = fBuffer[4*i+4];
if (z < zmin) zmin = z;
if (z > zmax) zmax = z;
}
THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax,ymin,ymax,zmin,zmax);
}
Double_t *buffer = fBuffer; fBuffer = 0;
for (Int_t i=0;i<nbentries;i++) {
Fill(buffer[4*i+2],buffer[4*i+3],buffer[4*i+4],buffer[4*i+1]);
}
if (deleteBuffer) { delete buffer; fBufferSize = 0;}
else { fBuffer = buffer; fBuffer[0] = 0;}
return nbentries;
}
//______________________________________________________________________________
Int_t TH3::BufferFill(Axis_t x, Axis_t y, Axis_t z, Stat_t w)
{
// accumulate arguments in buffer. When buffer is full, empty the buffer
// fBuffer[0] = number of entries in buffer
// fBuffer[1] = w of first entry
// fBuffer[2] = x of first entry
// fBuffer[3] = y of first entry
// fBuffer[4] = z of first entry
Int_t nbentries = (Int_t)fBuffer[0];
if (4*nbentries+4 >= fBufferSize) {
BufferEmpty(kTRUE);
return Fill(x,y,z,w);
}
fBuffer[4*nbentries+1] = w;
fBuffer[4*nbentries+2] = x;
fBuffer[4*nbentries+3] = y;
fBuffer[4*nbentries+4] = z;
fBuffer[0] += 1;
return -3;
}
//______________________________________________________________________________
Int_t TH3::Fill(Axis_t x, Axis_t y, Axis_t z)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y,z by 1 *-*-*-*-*
//*-* ====================================
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) return BufferFill(x,y,z,1);
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
binz = fZaxis.FindBin(z);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin);
if (fSumw2.fN) ++fSumw2.fArray[bin];
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (binz == 0 || binz > fZaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
++fTsumw;
++fTsumw2;
fTsumwx += x;
fTsumwx2 += x*x;
fTsumwy += y;
fTsumwy2 += y*y;
fTsumwxy += x*y;
fTsumwz += z;
fTsumwz2 += z*z;
fTsumwxz += x*z;
fTsumwyz += y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(Axis_t x, Axis_t y, Axis_t z, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*-*Increment cell defined by x,y,z by a weight w*-*-*-*-*
//*-* =============================================
//*-*
//*-* If the storage of the sum of squares of weights has been triggered,
//*-* via the function Sumw2, then the sum of the squares of weights is incremented
//*-* by w^2 in the cell corresponding to x,y,z.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
if (fBuffer) return BufferFill(x,y,z,w);
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
binz = fZaxis.FindBin(z);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (binz == 0 || binz > fZaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
fTsumw += w;
fTsumw2 += w*w;
fTsumwx += w*x;
fTsumwx2 += w*x*x;
fTsumwy += w*y;
fTsumwy2 += w*y*y;
fTsumwxy += w*x*y;
fTsumwz += w*z;
fTsumwz2 += w*z*z;
fTsumwxz += w*x*z;
fTsumwyz += w*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(const char *namex, const char *namey, const char *namez, Stat_t w)
{
// Increment cell defined by namex,namey,namez by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(namey);
binz = fZaxis.FindBin(namez);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
if (binz == 0 || binz > fZaxis.GetNbins()) return -1;
Axis_t x = fXaxis.GetBinCenter(binx);
Axis_t y = fYaxis.GetBinCenter(biny);
Axis_t z = fZaxis.GetBinCenter(binz);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(const char *namex, Axis_t y, const char *namez, Stat_t w)
{
// Increment cell defined by namex,y,namez by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(y);
binz = fZaxis.FindBin(namez);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (binz == 0 || binz > fZaxis.GetNbins()) return -1;
Axis_t x = fXaxis.GetBinCenter(binx);
Axis_t z = fZaxis.GetBinCenter(binz);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(const char *namex, const char *namey, Axis_t z, Stat_t w)
{
// Increment cell defined by namex,namey,z by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(namex);
biny = fYaxis.FindBin(namey);
binz = fZaxis.FindBin(z);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
if (binz == 0 || binz > fZaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
Axis_t x = fXaxis.GetBinCenter(binx);
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(Axis_t x, const char *namey, const char *namez, Stat_t w)
{
// Increment cell defined by x,namey,namezz by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(namey);
binz = fZaxis.FindBin(namez);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
if (binz == 0 || binz > fZaxis.GetNbins()) return -1;
Axis_t y = fYaxis.GetBinCenter(biny);
Axis_t z = fZaxis.GetBinCenter(binz);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(Axis_t x, const char *namey, Axis_t z, Stat_t w)
{
// Increment cell defined by x,namey,z by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(namey);
binz = fZaxis.FindBin(z);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
if (binz == 0 || binz > fZaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
Axis_t y = fYaxis.GetBinCenter(biny);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
Int_t TH3::Fill(Axis_t x, Axis_t y, const char *namez, Stat_t w)
{
// Increment cell defined by x,y,namez by a weight w
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the cell corresponding to x,y,z.
//
Int_t binx, biny, binz, bin;
fEntries++;
binx = fXaxis.FindBin(x);
biny = fYaxis.FindBin(y);
binz = fZaxis.FindBin(namez);
bin = binx + (fXaxis.GetNbins()+2)*(biny + (fYaxis.GetNbins()+2)*binz);
AddBinContent(bin,w);
if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
if (binx == 0 || binx > fXaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (biny == 0 || biny > fYaxis.GetNbins()) {
if (!fgStatOverflows) return -1;
}
if (binz == 0 || binz > fZaxis.GetNbins()) return -1;
Axis_t z = fZaxis.GetBinCenter(binz);
Stat_t v = (w > 0 ? w : -w);
fTsumw += v;
fTsumw2 += v*v;
fTsumwx += v*x;
fTsumwx2 += v*x*x;
fTsumwy += v*y;
fTsumwy2 += v*y*y;
fTsumwxy += v*x*y;
fTsumwz += v*z;
fTsumwz2 += v*z*z;
fTsumwxz += v*x*z;
fTsumwyz += v*y*z;
return bin;
}
//______________________________________________________________________________
void TH3::FillRandom(const char *fname, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in function fname*-*-*-*
//*-* =======================================================
//*-*
//*-* The distribution contained in the function fname (TF1) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-* One can also call TF1::GetRandom to get a random variate from a function.
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
Int_t bin, binx, biny, binz, ibin, loop;
Double_t r1, x, y,z, xv[3];
//*-*- Search for fname in the list of ROOT defined functions
TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
//*-*- Allocate temporary space to store the integral and compute integral
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbinsz = GetNbinsZ();
Int_t nxy = nbinsx*nbinsy;
Int_t nbins = nxy*nbinsz;
Double_t *integral = new Double_t[nbins+1];
ibin = 0;
integral[ibin] = 0;
for (binz=1;binz<=nbinsz;binz++) {
xv[2] = fZaxis.GetBinCenter(binz);
for (biny=1;biny<=nbinsy;biny++) {
xv[1] = fYaxis.GetBinCenter(biny);
for (binx=1;binx<=nbinsx;binx++) {
xv[0] = fXaxis.GetBinCenter(binx);
ibin++;
integral[ibin] = integral[ibin-1] + f1->Eval(xv[0],xv[1],xv[2]);
}
}
}
//*-*- Normalize integral to 1
if (integral[nbins] == 0 ) {
Error("FillRandom", "Integral = zero"); return;
}
for (bin=1;bin<=nbins;bin++) integral[bin] /= integral[nbins];
//*-*--------------Start main loop ntimes
if (fDimension < 2) nbinsy = -1;
if (fDimension < 3) nbinsz = -1;
for (loop=0;loop<ntimes;loop++) {
r1 = gRandom->Rndm(loop);
ibin = TMath::BinarySearch(nbins,&integral[0],r1);
binz = ibin/nxy;
biny = (ibin - nxy*binz)/nbinsx;
binx = 1 + ibin - nbinsx*(biny + nbinsy*binz);
if (nbinsz) binz++;
if (nbinsy) biny++;
x = fXaxis.GetBinCenter(binx);
y = fYaxis.GetBinCenter(biny);
z = fZaxis.GetBinCenter(binz);
Fill(x,y,z, 1.);
}
delete [] integral;
}
//______________________________________________________________________________
void TH3::FillRandom(TH1 *h, Int_t ntimes)
{
//*-*-*-*-*-*-*Fill histogram following distribution in histogram h*-*-*-*
//*-* ====================================================
//*-*
//*-* The distribution contained in the histogram h (TH3) is integrated
//*-* over the channel contents.
//*-* It is normalized to 1.
//*-* Getting one random number implies:
//*-* - Generating a random number between 0 and 1 (say r1)
//*-* - Look in which bin in the normalized integral r1 corresponds to
//*-* - Fill histogram channel
//*-* ntimes random numbers are generated
//*-*
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*
if (!h) { Error("FillRandom", "Null histogram"); return; }
if (fDimension != h->GetDimension()) {
Error("FillRandom", "Histograms with different dimensions"); return;
}
if (h->ComputeIntegral() == 0) return;
TH3 *h3 = (TH3*)h;
Int_t loop;
Axis_t x,y,z;
for (loop=0;loop<ntimes;loop++) {
h3->GetRandom3(x,y,z);
Fill(x,y,z,1.);
}
}
//______________________________________________________________________________
void TH3::FitSlicesZ(TF1 *f1, Int_t binminx, Int_t binmaxx, Int_t binminy, Int_t binmaxy, Int_t cut, Option_t *option)
{
// Project slices along Z in case of a 3-D histogram, then fit each slice
// with function f1 and make a 2-d histogram for each fit parameter
// Only cells in the bin range [binminx,binmaxx] and [binminy,binmaxy] are considered.
// if f1=0, a gaussian is assumed
// Before invoking this function, one can set a subrange to be fitted along Z
// via f1->SetRange(zmin,zmax)
// The argument option (default="QNR") can be used to change the fit options.
// "Q" means Quiet mode
// "N" means do not show the result of the fit
// "R" means fit the function in the specified function range
//
// Note that the generated histograms are added to the list of objects
// in the current directory. It is the user's responsability to delete
// these histograms.
//
// Example: Assume a 3-d histogram h3
// Root > h3->FitSlicesZ(); produces 4 TH2D histograms
// with h3_0 containing parameter 0(Constant) for a Gaus fit
// of each cell in X,Y projected along Z
// with h3_1 containing parameter 1(Mean) for a gaus fit
// with h3_2 containing parameter 2(RMS) for a gaus fit
// with h3_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
//
// Root > h3->Fit(0,15,22,0,0,10);
// same as above, but only for bins 15 to 22 along X
// and only for cells in X,Y for which the corresponding projection
// along Z has more than cut bins filled.
//
// NOTE: To access the generated histograms in the current directory, do eg:
// TH2D *h3_1 = (TH2D*)gDirectory->Get("h3_1");
Int_t nbinsx = fXaxis.GetNbins();
Int_t nbinsy = fYaxis.GetNbins();
Int_t nbinsz = fZaxis.GetNbins();
if (binminx < 1) binminx = 1;
if (binmaxx > nbinsx) binmaxx = nbinsx;
if (binmaxx < binminx) {binminx = 1; binmaxx = nbinsx;}
if (binminy < 1) binminy = 1;
if (binmaxy > nbinsy) binmaxy = nbinsy;
if (binmaxy < binminy) {binminy = 1; binmaxy = nbinsy;}
//default is to fit with a gaussian
if (f1 == 0) {
f1 = (TF1*)gROOT->GetFunction("gaus");
if (f1 == 0) f1 = new TF1("gaus","gaus",fZaxis.GetXmin(),fZaxis.GetXmax());
else f1->SetRange(fZaxis.GetXmin(),fZaxis.GetXmax());
}
const char *fname = f1->GetName();
Int_t npar = f1->GetNpar();
Double_t *parsave = new Double_t[npar];
f1->GetParameters(parsave);
//Create one 2-d histogram for each function parameter
Int_t ipar;
char name[80], title[80];
TH2D *hlist[25];
for (ipar=0;ipar<npar;ipar++) {
sprintf(name,"%s_%d",GetName(),ipar);
sprintf(title,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
hlist[ipar] = new TH2D(name,title, nbinsx, fXaxis.GetXmin(), fXaxis.GetXmax()
, nbinsy, fYaxis.GetXmin(), fYaxis.GetXmax());
}
sprintf(name,"%s_chi2",GetName());
TH2D *hchi2 = new TH2D(name,"chisquare", nbinsx, fXaxis.GetXmin(), fXaxis.GetXmax()
, nbinsy, fYaxis.GetXmin(), fYaxis.GetXmax());
//Loop on all cells in X,Y generate a projection along Z
TH1D *hpz = new TH1D("R_temp","_temp",nbinsz, fZaxis.GetXmin(), fZaxis.GetXmax());
Int_t bin,binx,biny,binz;
for (biny=binminy;biny<=binmaxy;biny++) {
Float_t y = fYaxis.GetBinCenter(biny);
for (binx=binminx;binx<=binmaxx;binx++) {
Float_t x = fXaxis.GetBinCenter(binx);
hpz->Reset();
Int_t nfill = 0;
for (binz=1;binz<=nbinsz;binz++) {
bin = GetBin(binx,biny,binz);
Float_t w = GetBinContent(bin);
if (w == 0) continue;
hpz->Fill(fZaxis.GetBinCenter(binz),w);
hpz->SetBinError(binz,GetBinError(bin));
nfill++;
}
if (nfill < cut) continue;
f1->SetParameters(parsave);
hpz->Fit(fname,option);
Int_t npfits = f1->GetNumberFitPoints();
if (npfits > npar && npfits >= cut) {
for (ipar=0;ipar<npar;ipar++) {
hlist[ipar]->Fill(x,y,f1->GetParameter(ipar));
hlist[ipar]->SetCellError(binx,biny,f1->GetParError(ipar));
}
hchi2->Fill(x,y,f1->GetChisquare()/(npfits-npar));
}
}
}
delete [] parsave;
delete hpz;
}
//______________________________________________________________________________
Stat_t TH3::GetCorrelationFactor(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return correlation factor between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 3 || axis2 > 3) {
Error("GetCorrelationFactor","Wrong parameters");
return 0;
}
if (axis1 == axis2) return 1;
Stat_t rms1 = GetRMS(axis1);
if (rms1 == 0) return 0;
Stat_t rms2 = GetRMS(axis2);
if (rms2 == 0) return 0;
return GetCovariance(axis1,axis2)/rms1/rms2;
}
//______________________________________________________________________________
Stat_t TH3::GetCovariance(Int_t axis1, Int_t axis2) const
{
//*-*-*-*-*-*-*-*Return covariance between axis1 and axis2*-*-*-*-*
//*-* ====================================================
if (axis1 < 1 || axis2 < 1 || axis1 > 3 || axis2 > 3) {
Error("GetCovariance","Wrong parameters");
return 0;
}
Stat_t stats[11];
GetStats(stats);
Stat_t sumw = stats[0];
Stat_t sumw2 = stats[1];
Stat_t sumwx = stats[2];
Stat_t sumwx2 = stats[3];
Stat_t sumwy = stats[4];
Stat_t sumwy2 = stats[5];
Stat_t sumwxy = stats[6];
Stat_t sumwz = stats[7];
Stat_t sumwz2 = stats[8];
Stat_t sumwxz = stats[9];
Stat_t sumwyz = stats[10];
if (sumw == 0) return 0;
if (axis1 == 1 && axis2 == 1) {
return TMath::Abs(sumwx2/sumw - sumwx*sumwx/sumw2);
}
if (axis1 == 2 && axis2 == 2) {
return TMath::Abs(sumwy2/sumw - sumwy*sumwy/sumw2);
}
if (axis1 == 3 && axis2 == 3) {
return TMath::Abs(sumwz2/sumw - sumwz*sumwz/sumw2);
}
if ((axis1 == 1 && axis2 == 2) || (axis1 == 2 && axis1 == 1)) {
return sumwxy/sumw - sumwx/sumw*sumwy/sumw;
}
if ((axis1 == 1 && axis2 == 3) || (axis1 == 3 && axis2 == 1)) {
return sumwxz/sumw - sumwx/sumw*sumwz/sumw;
}
if ((axis1 == 2 && axis2 == 3) || (axis1 == 3 && axis2 == 2)) {
return sumwyz/sumw - sumwy/sumw*sumwz/sumw;
}
return 0;
}
//______________________________________________________________________________
void TH3::GetRandom3(Axis_t &x, Axis_t &y, Axis_t &z)
{
// return 3 random numbers along axis x , y and z distributed according
// the cellcontents of a 3-dim histogram
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbinsz = GetNbinsZ();
Int_t nxy = nbinsx*nbinsy;
Int_t nbins = nxy*nbinsz;
Double_t integral;
if (fIntegral) {
if (fIntegral[nbins+1] != fEntries) integral = ComputeIntegral();
} else {
integral = ComputeIntegral();
if (integral == 0 || fIntegral == 0) return;
}
Float_t r1 = gRandom->Rndm();
Int_t ibin = TMath::BinarySearch(nbins,fIntegral,r1);
Int_t binz = ibin/nxy;
Int_t biny = (ibin - nxy*binz)/nbinsx;
Int_t binx = ibin - nbinsx*(biny + nbinsy*binz);
x = fXaxis.GetBinLowEdge(binx+1)
+fXaxis.GetBinWidth(binx+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
y = fYaxis.GetBinLowEdge(biny+1) + fYaxis.GetBinWidth(biny+1)*gRandom->Rndm();
z = fZaxis.GetBinLowEdge(binz+1) + fZaxis.GetBinWidth(binz+1)*gRandom->Rndm();
}
//______________________________________________________________________________
void TH3::GetStats(Stat_t *stats) const
{
// fill the array stats from the contents of this histogram
// The array stats must be correctly dimensionned in the calling program.
// stats[0] = sumw
// stats[1] = sumw2
// stats[2] = sumwx
// stats[3] = sumwx2
// stats[4] = sumwy
// stats[5] = sumwy2
// stats[6] = sumwxy
// stats[7] = sumwz
// stats[8] = sumwz2
// stats[9] = sumwxz
// stats[10]= sumwyz
if (fBuffer) ((TH3*)this)->BufferEmpty();
Int_t bin, binx, biny, binz;
Stat_t w;
Float_t x,y,z;
if (fTsumw == 0 || fXaxis.TestBit(TAxis::kAxisRange) || fYaxis.TestBit(TAxis::kAxisRange) || fZaxis.TestBit(TAxis::kAxisRange)) {
for (bin=0;bin<9;bin++) stats[bin] = 0;
for (binz=fZaxis.GetFirst();binz<=fZaxis.GetLast();binz++) {
z = fZaxis.GetBinCenter(binz);
for (biny=fYaxis.GetFirst();biny<=fYaxis.GetLast();biny++) {
y = fYaxis.GetBinCenter(biny);
for (binx=fXaxis.GetFirst();binx<=fXaxis.GetLast();binx++) {
bin = GetBin(binx,biny,binz);
x = fXaxis.GetBinCenter(binx);
w = TMath::Abs(GetBinContent(bin));
stats[0] += w;
stats[1] += w*w;
stats[2] += w*x;
stats[3] += w*x*x;
stats[4] += w*y;
stats[5] += w*y*y;
stats[6] += w*x*y;
stats[7] += w*z;
stats[8] += w*z*z;
stats[9] += w*x*z;
stats[10]+= w*y*z;
}
}
}
} else {
stats[0] = fTsumw;
stats[1] = fTsumw2;
stats[2] = fTsumwx;
stats[3] = fTsumwx2;
stats[4] = fTsumwy;
stats[5] = fTsumwy2;
stats[6] = fTsumwxy;
stats[7] = fTsumwz;
stats[8] = fTsumwz2;
stats[9] = fTsumwxz;
stats[10]= fTsumwyz;
}
}
//______________________________________________________________________________
Stat_t TH3::Integral(Option_t *option) const
{
//Return integral of bin contents. Only bins in the bins range are considered.
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x, y and in z.
return Integral(fXaxis.GetFirst(),fXaxis.GetLast(),
fYaxis.GetFirst(),fYaxis.GetLast(),
fZaxis.GetFirst(),fZaxis.GetLast(),option);
}
//______________________________________________________________________________
Stat_t TH3::Integral(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Int_t binz1, Int_t binz2, Option_t *option) const
{
//Return integral of bin contents in range [binx1,binx2],[biny1,biny2],[binz1,binz2]
// for a 3-D histogram
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x, y and in z.
Int_t nbinsx = GetNbinsX();
Int_t nbinsy = GetNbinsY();
Int_t nbinsz = GetNbinsZ();
if (binx1 < 0) binx1 = 0;
if (binx2 > nbinsx+1) binx2 = nbinsx+1;
if (biny1 < 0) biny1 = 0;
if (biny2 > nbinsy+1) biny2 = nbinsy+1;
if (binz1 < 0) binz1 = 0;
if (binz2 > nbinsz+1) binz2 = nbinsz+1;
Stat_t integral = 0;
//*-*- Loop on bins in specified range
TString opt = option;
opt.ToLower();
Bool_t width = kFALSE;
if (opt.Contains("width")) width = kTRUE;
Int_t bin, binx, biny, binz;
for (binz=binz1;binz<=binz2;binz++) {
for (biny=biny1;biny<=biny2;biny++) {
for (binx=binx1;binx<=binx2;binx++) {
bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
if (width) integral += GetBinContent(bin)*fXaxis.GetBinWidth(binx)*fYaxis.GetBinWidth(biny)*fZaxis.GetBinWidth(binz);
else integral += GetBinContent(bin);
}
}
}
return integral;
}
//______________________________________________________________________________
Double_t TH3::KolmogorovTest(TH1 *h2, Option_t *option) const
{
// Statistical test of compatibility in shape between
// THIS histogram and h2, using Kolmogorov test.
// Default: Ignore under- and overflow bins in comparison
//
// option is a character string to specify options
// "U" include Underflows in test
// "O" include Overflows
// "N" include comparison of normalizations
// "D" Put out a line of "Debug" printout
//
// The returned function value is the probability of test
// (much less than one means NOT compatible)
//
// WARNING !!!! THIS FUNCTION NOT YET TESTED
// I started from TH2::KolmogorovTest, but changes are probably required
// when invoking KolmogorovProb to take into account the 3rd dimension
// It would be nice if a mathematician could look into this.
//
// Code adapted by Rene Brun from original HBOOK routine HDIFF
TString opt = option;
opt.ToUpper();
Double_t prb = 0;
TH1 *h1 = (TH1*)this;
if (h2 == 0) return 0;
TAxis *xaxis1 = h1->GetXaxis();
TAxis *xaxis2 = h2->GetXaxis();
TAxis *yaxis1 = h1->GetYaxis();
TAxis *yaxis2 = h2->GetYaxis();
TAxis *zaxis1 = h1->GetZaxis();
TAxis *zaxis2 = h2->GetZaxis();
Int_t ncx1 = xaxis1->GetNbins();
Int_t ncx2 = xaxis2->GetNbins();
Int_t ncy1 = yaxis1->GetNbins();
Int_t ncy2 = yaxis2->GetNbins();
Int_t ncz1 = zaxis1->GetNbins();
Int_t ncz2 = zaxis2->GetNbins();
// Check consistency of dimensions
if (h1->GetDimension() != 3 || h2->GetDimension() != 3) {
Error("KolmogorovTest","Histograms must be 3-Dn");
return 0;
}
// Check consistency in number of channels
if (ncx1 != ncx2) {
Error("KolmogorovTest","Number of channels in X is different, %d and %dn",ncx1,ncx2);
return 0;
}
if (ncy1 != ncy2) {
Error("KolmogorovTest","Number of channels in Y is different, %d and %dn",ncy1,ncy2);
return 0;
}
if (ncz1 != ncz2) {
Error("KolmogorovTest","Number of channels in Z is different, %d and %dn",ncz1,ncz2);
return 0;
}
// Check consistency in channel edges
Bool_t afunc1 = kFALSE;
Bool_t afunc2 = kFALSE;
Double_t difprec = 1e-5;
Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along X");
return 0;
}
diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along Y");
return 0;
}
diff1 = TMath::Abs(zaxis1->GetXmin() - zaxis2->GetXmin());
diff2 = TMath::Abs(zaxis1->GetXmax() - zaxis2->GetXmax());
if (diff1 > difprec || diff2 > difprec) {
Error("KolmogorovTest","histograms with different binning along Z");
return 0;
}
// Should we include Uflows, Oflows?
Int_t ibeg = 1, jbeg = 1, kbeg = 1;
Int_t iend = ncx1, jend = ncy1, kend = ncz1;
if (opt.Contains("U")) {ibeg = 0; jbeg = 0; kbeg = 0;}
if (opt.Contains("O")) {iend = ncx1+1; jend = ncy1+1; kend = ncz1+1;}
Int_t i,j,k,bin;
Double_t hsav;
Double_t sum1 = 0;
Double_t tsum1 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
for (k=0;k<=ncz1+1;k++) {
bin = h1->GetBin(i,j,k);
hsav = h1->GetBinContent(bin);
tsum1 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend && k >= kbeg && k <= kend) sum1 += hsav;
}
}
}
Double_t sum2 = 0;
Double_t tsum2 = 0;
for (i=0;i<=ncx1+1;i++) {
for (j=0;j<=ncy1+1;j++) {
for (k=0;k<=ncz1+1;k++) {
bin = h1->GetBin(i,j,k);
hsav = h1->GetBinContent(bin);
tsum2 += hsav;
if (i >= ibeg && i <= iend && j >= jbeg && j <= jend&& k >= kbeg && k <= kend) sum2 += hsav;
}
}
}
// Check that both scatterplots contain events
if (sum1 == 0) {
Error("KolmogorovTest","Integral is zero for h1=%sn",h1->GetName());
return 0;
}
if (sum2 == 0) {
Error("KolmogorovTest","Integral is zero for h2=%sn",h2->GetName());
return 0;
}
// Check that scatterplots are not weighted or saturated
Double_t num1 = h1->GetEntries();
Double_t num2 = h2->GetEntries();
if (num1 != tsum1) {
Warning("KolmogorovTest","Saturation or weighted events for h1=%s, num1=%g, tsum1=%gn",h1->GetName(),num1,tsum1);
}
if (num2 != tsum2) {
Warning("KolmogorovTest","Saturation or weighted events for h2=%s, num2=%g, tsum2=%gn",h2->GetName(),num2,tsum2);
}
// Find first Kolmogorov distance
Double_t s1 = 1/sum1;
Double_t s2 = 1/sum2;
Double_t dfmax = 0;
Double_t rsum1=0, rsum2=0;
for (i=ibeg;i<=iend;i++) {
for (j=jbeg;j<=jend;j++) {
for (k=kbeg;k<=kend;k++) {
bin = h1->GetBin(i,j,k);
rsum1 += s1*h1->GetBinContent(bin);
rsum2 += s2*h2->GetBinContent(bin);
dfmax = TMath::Max(dfmax, TMath::Abs(rsum1-rsum2));
}
}
}
// Find second Kolmogorov distance
Double_t dfmax2 = 0;
rsum1=0, rsum2=0;
for (k=kbeg;k<=kend;k++) {
for (j=jbeg;j<=jend;j++) {
for (i=ibeg;i<=iend;i++) {
bin = h1->GetBin(i,j,k);
rsum1 += s1*h1->GetBinContent(bin);
rsum2 += s2*h2->GetBinContent(bin);
dfmax2 = TMath::Max(dfmax2, TMath::Abs(rsum1-rsum2));
}
}
}
// Probably one should compute a third distance <======
// Get Kolmogorov probability
Double_t factnm;
if (afunc1) factnm = TMath::Sqrt(sum2);
else if (afunc2) factnm = TMath::Sqrt(sum1);
else factnm = TMath::Sqrt(sum1*sum2/(sum1+sum2));
Double_t z = dfmax*factnm;
Double_t z2 = dfmax2*factnm;
prb = TMath::KolmogorovProb(0.5*(z+z2)); //<==this should probably be updated
Double_t prb1=0, prb2=0;
Double_t resum1, resum2, chi2, d12;
if (opt.Contains("N")) { //Combine probabilities for shape and normalization,
prb1 = prb;
resum1 = sum1; if (afunc1) resum1 = 0;
resum2 = sum2; if (afunc2) resum2 = 0;
d12 = sum1-sum2;
chi2 = d12*d12/(resum1+resum2);
prb2 = TMath::Prob(chi2,1);
// see Eadie et al., section 11.6.2
if (prb > 0 && prb2 > 0) prb = prb*prb2*(1-TMath::Log(prb*prb2));
else prb = 0;
}
// debug printout
if (opt.Contains("D")) {
printf(" Kolmo Prob h1 = %s, sum1=%gn",h1->GetName(),sum1);
printf(" Kolmo Prob h2 = %s, sum2=%gn",h2->GetName(),sum2);
printf(" Kolmo Probabil = %f, Max Dist = %gn",prb,dfmax);
if (opt.Contains("N"))
printf(" Kolmo Probabil = %f for shape alone, =%f for normalisation alonen",prb1,prb2);
}
// This numerical error condition should never occur:
if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%sn",h1->GetName());
if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%sn",h2->GetName());
return prb;
}
//______________________________________________________________________________
Int_t TH3::Merge(TCollection *list)
{
//Add all histograms in the collection to this histogram.
//This function computes the min/max for the axes,
//compute a new number of bins, if necessary,
//add bin contents, errors and statistics.
//The function returns the merged number of entries if the merge is
//successfull, -1 otherwise.
//
//IMPORTANT remark. The 3 axis x,y and z may have different number
//of bins and different limits, BUT the largest bin width must be
//a multiple of the smallest bin width.
if (!list) return 0;
TIter next(list);
Double_t umin,umax,vmin,vmax,wmin,wmax;
Int_t nx,ny,nz;
Double_t xmin = fXaxis.GetXmin();
Double_t xmax = fXaxis.GetXmax();
Double_t ymin = fYaxis.GetXmin();
Double_t ymax = fYaxis.GetXmax();
Double_t zmin = fZaxis.GetXmin();
Double_t zmax = fZaxis.GetXmax();
Double_t bwix = fXaxis.GetBinWidth(1);
Double_t bwiy = fYaxis.GetBinWidth(1);
Double_t bwiz = fZaxis.GetBinWidth(1);
Int_t nbix = fXaxis.GetNbins();
Int_t nbiy = fYaxis.GetNbins();
Int_t nbiz = fZaxis.GetNbins();
const Int_t kNstat = 11;
Stat_t stats[kNstat], totstats[kNstat];
TH3 *h;
Int_t i, nentries=(Int_t)fEntries;
for (i=0;i<kNstat;i++) {totstats[i] = stats[i] = 0;}
GetStats(totstats);
Bool_t same = kTRUE;
while ((h=(TH3*)next())) {
if (!h->InheritsFrom(TH3::Class())) {
Error("Add","Attempt to add object of class: %s to a %s",h->ClassName(),this->ClassName());
return -1;
}
//import statistics
h->GetStats(stats);
for (i=0;i<kNstat;i++) totstats[i] += stats[i];
nentries += (Int_t)h->GetEntries();
// find min/max of the axes
umin = h->GetXaxis()->GetXmin();
umax = h->GetXaxis()->GetXmax();
vmin = h->GetYaxis()->GetXmin();
vmax = h->GetYaxis()->GetXmax();
wmin = h->GetZaxis()->GetXmin();
wmax = h->GetZaxis()->GetXmax();
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
nz = h->GetZaxis()->GetNbins();
if (nx != nbix || ny != nbiy || nz != nbiz ||
umin != xmin || umax != xmax ||
vmin != ymin || vmax != ymax ||
wmin != zmin || wmax != zmax) {
same = kFALSE;
if (umin < xmin) xmin = umin;
if (umax > xmax) xmax = umax;
if (vmin < ymin) ymin = vmin;
if (vmax > ymax) ymax = vmax;
if (wmin < zmin) zmin = wmin;
if (wmax > zmax) zmax = wmax;
if (h->GetXaxis()->GetBinWidth(1) > bwix) bwix = h->GetXaxis()->GetBinWidth(1);
if (h->GetYaxis()->GetBinWidth(1) > bwiy) bwiy = h->GetYaxis()->GetBinWidth(1);
if (h->GetZaxis()->GetBinWidth(1) > bwiz) bwiz = h->GetZaxis()->GetBinWidth(1);
}
}
// if different binning compute best binning
if (!same) {
nbix = (Int_t) ((xmax-xmin)/bwix +0.1); while(nbix > 100) nbix /= 2;
nbiy = (Int_t) ((ymax-ymin)/bwiy +0.1); while(nbiy > 100) nbiy /= 2;
nbiz = (Int_t) ((zmax-zmin)/bwiz +0.1); while(nbiz > 100) nbiz /= 2;
SetBins(nbix,xmin,xmax,nbiy,ymin,ymax,nbiz,zmin,zmax);
}
//merge bin contents and errors
next.Reset();
Int_t ibin, bin, binx, biny, binz, ix, iy, iz;
Double_t cu;
while ((h=(TH3*)next())) {
nx = h->GetXaxis()->GetNbins();
ny = h->GetYaxis()->GetNbins();
nz = h->GetZaxis()->GetNbins();
for (binz=0;binz<=nz+1;binz++) {
iz = fZaxis.FindBin(h->GetZaxis()->GetBinCenter(binz));
for (biny=0;biny<=ny+1;biny++) {
iy = fYaxis.FindBin(h->GetYaxis()->GetBinCenter(biny));
for (binx=0;binx<=nx+1;binx++) {
ix = fXaxis.FindBin(h->GetXaxis()->GetBinCenter(binx));
bin = binx +(nx+2)*(biny + (ny+2)*binz);
ibin = ix +(nbix+2)*(iy + (nbiy+2)*iz);
cu = h->GetBinContent(bin);
AddBinContent(ibin,cu);
if (fSumw2.fN) {
Double_t error1 = h->GetBinError(bin);
fSumw2.fArray[ibin] += error1*error1;
}
}
}
}
}
//copy merged stats
PutStats(totstats);
SetEntries(nentries);
return nentries;
}
//______________________________________________________________________________
TH1D *TH3::ProjectionZ(const char *name, Int_t ixmin, Int_t ixmax, Int_t iymin, Int_t iymax, Option_t *option) const
{
//*-*-*-*-*Project a 3-D histogram into a 1-D histogram along Z*-*-*-*-*-*-*
//*-* ====================================================
//
// The projection is always of the type TH1D.
// The projection is made from the cells along the X axis
// ranging from ixmin to ixmax and iymin to iymax included.
// By default, bins 1 to nx and 1 to ny are included
//
// if option "e" is specified, the errors are computed.
// if option "d" is specified, the projection is drawn in the current pad.
//
// NOTE that if a TH1D named name exists in the current directory or pad,
// the histogram is reset and filled again with the current contents of the TH2.
//
// code from Paola Collins & Hans Dijkstra
TString opt = option;
opt.ToLower();
Int_t nx = GetNbinsX();
Int_t ny = GetNbinsY();
Int_t nz = GetNbinsZ();
if (ixmin < 0) ixmin = 1;
if (ixmax < 0) ixmax = nx;
if (ixmax > nx+1) ixmax = nx;
if (iymin < 0) iymin = 1;
if (iymax < 0) iymax = ny;
if (iymax > ny+1) iymax = ny;
// Create the projection histogram
char *pname = (char*)name;
if (strcmp(name,"_pz") == 0) {
Int_t nch = strlen(GetName()) + 4;
pname = new char[nch];
sprintf(pname,"%s%s",GetName(),name);
}
TH1D *h1=0;
//check if histogram with identical name exist
TObject *h1obj = gROOT->FindObject(pname);
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
}
if (!h1) {
const TArrayD *bins = fZaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(pname,GetTitle(),nz,fZaxis.GetXmin(),fZaxis.GetXmax());
} else {
h1 = new TH1D(pname,GetTitle(),nz,bins->fArray);
}
}
if (opt.Contains("e")) h1->Sumw2();
if (pname != name) delete [] pname;
// Fill the projected histogram
Float_t cont,e,e1;
Double_t entries = 0;
Double_t newerror = 0;
for (Int_t ixbin=ixmin;ixbin<=ixmax;ixbin++){
for (Int_t iybin=iymin;iybin<=iymax;iybin++){
for (Int_t binz=0;binz<=(nz+1);binz++){
Int_t bin = GetBin(ixbin,iybin,binz);
cont = GetBinContent(bin);
if (h1->GetSumw2N()) {
e = GetBinError(bin);
e1 = h1->GetBinError(binz);
newerror = TMath::Sqrt(e*e + e1*e1);
}
if (cont) {
h1->Fill(fZaxis.GetBinCenter(binz), cont);
entries += cont;
}
if (h1->GetSumw2N()) h1->SetBinError(binz,newerror);
}
}
}
if (iymin <=1 && iymax >= ny && ixmin <=1 && ixmax >= nx) h1->SetEntries(fEntries);
else h1->SetEntries(entries);
if (opt.Contains("d")) {
TVirtualPad *padsav = gPad;
TVirtualPad *pad = gROOT->GetSelectedPad();
if (pad) pad->cd();
char optin[100];
strcpy(optin,opt.Data());
char *d = (char*)strstr(optin,"d"); if (d) {*d = ' '; if (*(d+1) == 0) *d=0;}
char *e = (char*)strstr(optin,"e"); if (e) {*e = ' '; if (*(e+1) == 0) *e=0;}
if (!gPad->FindObject(h1)) {
h1->Draw(optin);
} else {
h1->Paint(optin);
}
if (padsav) padsav->cd();
}
return h1;
}
//______________________________________________________________________________
TH1 *TH3::Project3D(Option_t *option) const
{
// Project a 3-d histogram into 1 or 2-d histograms depending on the
// option parameter
// option may contain a combination of the characters x,y,z,e
// option = "x" return the x projection into a TH1D histogram
// option = "y" return the y projection into a TH1D histogram
// option = "z" return the z projection into a TH1D histogram
// option = "xy" return the x versus y projection into a TH2D histogram
// option = "yx" return the y versus x projection into a TH2D histogram
// option = "xz" return the x versus z projection into a TH2D histogram
// option = "zx" return the z versus x projection into a TH2D histogram
// option = "yz" return the y versus z projection into a TH2D histogram
// option = "zy" return the z versus y projection into a TH2D histogram
//
// If option contains the string "e", errors are computed
//
// The projection is made for the selected bins only.
// To select a bin range along an axis, use TAxis::SetRange, eg
// h3.GetYaxis()->SetRange(23,56);
TString opt = option; opt.ToLower();
Int_t ixmin = fXaxis.GetFirst();
Int_t ixmax = fXaxis.GetLast();
Int_t iymin = fYaxis.GetFirst();
Int_t iymax = fYaxis.GetLast();
Int_t izmin = fZaxis.GetFirst();
Int_t izmax = fZaxis.GetLast();
Int_t nx = ixmax-ixmin+1;
Int_t ny = iymax-iymin+1;
Int_t nz = izmax-izmin+1;
Int_t pcase = 0;
if (opt.Contains("x")) pcase = 1;
if (opt.Contains("y")) pcase = 2;
if (opt.Contains("z")) pcase = 3;
if (opt.Contains("xy")) pcase = 4;
if (opt.Contains("yx")) pcase = 5;
if (opt.Contains("xz")) pcase = 6;
if (opt.Contains("zx")) pcase = 7;
if (opt.Contains("yz")) pcase = 8;
if (opt.Contains("zy")) pcase = 9;
// Create the projection histogram
TH1D *h1 = 0;
TH2D *h2 = 0;
Int_t nch = strlen(GetName()) +opt.Length() +2;
char *name = new char[nch];
sprintf(name,"%s_%s",GetName(),option);
nch = strlen(GetTitle()) +opt.Length() +2;
char *title = new char[nch];
sprintf(title,"%s_%s",GetTitle(),option);
TObject *h1obj = gROOT->FindObject(name);
if (h1obj && !h1obj->InheritsFrom("TH1")) h1obj = 0;
const TArrayD *bins;
const TArrayD *xbins;
const TArrayD *ybins;
const TArrayD *zbins;
switch (pcase) {
case 1:
// "x"
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
break;
}
bins = fXaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(name,title,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax));
} else {
h1 = new TH1D(name,title,nx,&bins->fArray[ixmin-1]);
}
break;
case 2:
// "y"
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
break;
}
bins = fYaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(name,title,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax));
} else {
h1 = new TH1D(name,title,ny,&bins->fArray[iymin-1]);
}
break;
case 3:
// "z"
if (h1obj && h1obj->InheritsFrom("TH1D")) {
h1 = (TH1D*)h1obj;
h1->Reset();
break;
}
bins = fZaxis.GetXbins();
if (bins->fN == 0) {
h1 = new TH1D(name,title,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax));
} else {
h1 = new TH1D(name,title,nz,&bins->fArray[izmin-1]);
}
break;
case 4:
// "xy"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
xbins = fXaxis.GetXbins();
ybins = fYaxis.GetXbins();
if (xbins->fN == 0 && ybins->fN == 0) {
h2 = new TH2D(name,title,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax)
,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax));
} else if (ybins->fN == 0) {
h2 = new TH2D(name,title,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax)
,nx,&xbins->fArray[ixmin-1]);
} else if (xbins->fN == 0) {
h2 = new TH2D(name,title,ny,&ybins->fArray[iymin-1]
,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax));
} else {
h2 = new TH2D(name,title,ny,&ybins->fArray[iymin-1],nx,&xbins->fArray[ixmin-1]);
}
break;
case 5:
// "yx"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
xbins = fXaxis.GetXbins();
ybins = fYaxis.GetXbins();
if (xbins->fN == 0 && ybins->fN == 0) {
h2 = new TH2D(name,title,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax)
,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax));
} else if (xbins->fN == 0) {
h2 = new TH2D(name,title,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax)
,ny,&ybins->fArray[iymin-1]);
} else if (ybins->fN == 0) {
h2 = new TH2D(name,title,nx,&xbins->fArray[ixmin-1]
,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax));
} else {
h2 = new TH2D(name,title,nx,&xbins->fArray[ixmin-1],ny,&ybins->fArray[iymin-1]);
}
break;
case 6:
// "xz"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
xbins = fXaxis.GetXbins();
zbins = fZaxis.GetXbins();
if (xbins->fN == 0 && zbins->fN == 0) {
h2 = new TH2D(name,title,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax)
,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax));
} else if (zbins->fN == 0) {
h2 = new TH2D(name,title,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax)
,nx,&xbins->fArray[ixmin-1]);
} else if (xbins->fN == 0) {
h2 = new TH2D(name,title,nz,&zbins->fArray[izmin-1]
,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax));
} else {
h2 = new TH2D(name,title,nz,&zbins->fArray[izmin-1],nx,&xbins->fArray[ixmin-1]);
}
break;
case 7:
// "zx"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
xbins = fXaxis.GetXbins();
zbins = fZaxis.GetXbins();
if (xbins->fN == 0 && zbins->fN == 0) {
h2 = new TH2D(name,title,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax)
,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax));
} else if (xbins->fN == 0) {
h2 = new TH2D(name,title,nx,fXaxis.GetBinLowEdge(ixmin),fXaxis.GetBinUpEdge(ixmax)
,nz,&zbins->fArray[izmin-1]);
} else if (zbins->fN == 0) {
h2 = new TH2D(name,title,nx,&xbins->fArray[ixmin-1]
,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax));
} else {
h2 = new TH2D(name,title,nx,&xbins->fArray[ixmin-1],nz,&zbins->fArray[izmin-1]);
}
break;
case 8:
// "yz"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
ybins = fYaxis.GetXbins();
zbins = fZaxis.GetXbins();
if (ybins->fN == 0 && zbins->fN == 0) {
h2 = new TH2D(name,title,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax)
,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax));
} else if (zbins->fN == 0) {
h2 = new TH2D(name,title,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax)
,ny,&ybins->fArray[iymin-1]);
} else if (ybins->fN == 0) {
h2 = new TH2D(name,title,nz,&zbins->fArray[izmin-1]
,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax));
} else {
h2 = new TH2D(name,title,nz,&zbins->fArray[izmin-1],ny,&ybins->fArray[iymin-1]);
}
break;
case 9:
// "zy"
if (h1obj && h1obj->InheritsFrom("TH2D")) {
h2 = (TH2D*)h1obj;
h2->Reset();
break;
}
ybins = fYaxis.GetXbins();
zbins = fZaxis.GetXbins();
if (ybins->fN == 0 && zbins->fN == 0) {
h2 = new TH2D(name,title,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax)
,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax));
} else if (ybins->fN == 0) {
h2 = new TH2D(name,title,ny,fYaxis.GetBinLowEdge(iymin),fYaxis.GetBinUpEdge(iymax)
,nz,&zbins->fArray[izmin-1]);
} else if (zbins->fN == 0) {
h2 = new TH2D(name,title,ny,&ybins->fArray[iymin-1]
,nz,fZaxis.GetBinLowEdge(izmin),fZaxis.GetBinUpEdge(izmax));
} else {
h2 = new TH2D(name,title,ny,&ybins->fArray[iymin-1],nz,&zbins->fArray[izmin-1]);
}
break;
}
delete [] name;
delete [] title;
TH1 *h = h1;
if (h2) h = h2;
if (h == 0) return 0;
Bool_t computeErrors = kFALSE;
if (opt.Contains("e")) {h->Sumw2(); computeErrors = kTRUE;}
// Fill the projected histogram taking into accounts underflow/overflows
Float_t cont,e,e1;
Double_t entries = 0;
Double_t newerror = 0;
for (Int_t ixbin=0;ixbin<=1+fXaxis.GetNbins();ixbin++){
Int_t ix = ixbin-ixmin+1;
if (ix < 0) ix=0; if (ix > nx+1) ix = nx+1;
for (Int_t iybin=0;iybin<=1+fYaxis.GetNbins();iybin++){
Int_t iy = iybin-iymin+1;
if (iy < 0) iy=0; if (iy > ny+1) iy = ny+1;
for (Int_t izbin=0;izbin<=1+fZaxis.GetNbins();izbin++){
Int_t iz = izbin-izmin+1;
if (iz < 0) iz=0; if (iz > nz+1) iz = nz+1;
Int_t bin = GetBin(ixbin,iybin,izbin);
cont = GetBinContent(bin);
switch (pcase) {
case 1:
// "x"
if (iybin < iymin || iybin > iymax) continue;
if (izbin < izmin || izbin > izmax) continue;
e1 = h1->GetBinError(ix);
if (cont) h1->Fill(fXaxis.GetBinCenter(ixbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h1->SetBinError(ix,newerror);
}
break;
case 2:
// "y"
if (ixbin < ixmin || ixbin > ixmax) continue;
if (izbin < izmin || izbin > izmax) continue;
e1 = h1->GetBinError(iy);
if (cont) h1->Fill(fYaxis.GetBinCenter(iybin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h1->SetBinError(iy,newerror);
}
break;
case 3:
// "z"
if (ixbin < ixmin || ixbin > ixmax) continue;
if (iybin < iymin || iybin > iymax) continue;
e1 = h1->GetBinError(iz);
if (cont) h1->Fill(fZaxis.GetBinCenter(izbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h1->SetBinError(iz,newerror);
}
break;
case 4:
// "xy"
if (izbin < izmin || izbin > izmax) continue;
e1 = h2->GetCellError(iy,ix);
if (cont) h2->Fill(fYaxis.GetBinCenter(iybin),fXaxis.GetBinCenter(ixbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(iy,ix,newerror);
}
break;
case 5:
// "yx"
if (izbin < izmin || izbin > izmax) continue;
e1 = h2->GetCellError(ix,iy);
if (cont) h2->Fill(fXaxis.GetBinCenter(ixbin),fYaxis.GetBinCenter(iybin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(ix,iy,newerror);
}
break;
case 6:
// "xz"
if (iybin < iymin || iybin > iymax) continue;
e1 = h2->GetCellError(iz,ix);
if (cont) h2->Fill(fZaxis.GetBinCenter(izbin),fXaxis.GetBinCenter(ixbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(iz,ix,newerror);
}
break;
case 7:
// "zx"
if (iybin < iymin || iybin > iymax) continue;
e1 = h2->GetCellError(ix,iz);
if (cont) h2->Fill(fXaxis.GetBinCenter(ixbin),fZaxis.GetBinCenter(izbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(ix,iz,newerror);
}
break;
case 8:
// "yz"
if (ixbin < ixmin || ixbin > ixmax) continue;
e1 = h2->GetCellError(iz,iy);
if (cont) h2->Fill(fZaxis.GetBinCenter(izbin),fYaxis.GetBinCenter(iybin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(iz,iy,newerror);
}
break;
case 9:
// "zy"
if (ixbin < ixmin || ixbin > ixmax) continue;
e1 = h2->GetCellError(iy,iz);
if (cont) h2->Fill(fYaxis.GetBinCenter(iybin),fZaxis.GetBinCenter(izbin), cont);
if (computeErrors) {
e = GetBinError(bin);
newerror = TMath::Sqrt(e*e + e1*e1);
h2->SetCellError(iy,iz,newerror);
}
break;
}
if (cont) {
entries += cont;
}
}
}
}
h->SetEntries(entries);
return h;
}
//______________________________________________________________________________
void TH3::PutStats(Stat_t *stats)
{
// Replace current statistics with the values in array stats
TH1::PutStats(stats);
fTsumwy = stats[4];
fTsumwy2 = stats[5];
fTsumwxy = stats[6];
fTsumwz = stats[7];
fTsumwz2 = stats[8];
fTsumwxz = stats[9];
fTsumwyz = stats[10];
}
//______________________________________________________________________________
void TH3::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH1::Reset(option);
fTsumwy = 0;
fTsumwy2 = 0;
fTsumwxy = 0;
fTsumwz = 0;
fTsumwz2 = 0;
fTsumwxz = 0;
fTsumwyz = 0;
}
//______________________________________________________________________________
void TH3::Sizeof3D() const
{
//*-*-*-*-*-*-*Return total size of this 3-D shape with its attributes*-*-*
//*-* ==========================================================
char *cmd;
if (GetDrawOption() && strstr(GetDrawOption(),"box")) {
cmd = Form("TMarker3DBox::SizeofH3((TH3 *)0x%lx);",(Long_t)this);
} else {
cmd = Form("TPolyMarker3D::SizeofH3((TH3 *)0x%lx);",(Long_t)this);
}
gROOT->ProcessLine(cmd);
}
//______________________________________________________________________________
void TH3::Streamer(TBuffer &R__b)
{
// Stream an object of class TH3.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH3::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
TH1::Streamer(R__b);
TAtt3D::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH3::IsA());
//====end of old versions
} else {
TH3::Class()->WriteBuffer(R__b,this);
}
}
ClassImp(TH3C)
//______________________________________________________________________________
// TH3C methods
//______________________________________________________________________________
TH3C::TH3C(): TH3()
{
}
//______________________________________________________________________________
TH3C::~TH3C()
{
}
//______________________________________________________________________________
TH3C::TH3C(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH3(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup)
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH3C::TH3C(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH3C::TH3C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayC::Set(fNcells);
}
//______________________________________________________________________________
TH3C::TH3C(const TH3C &h3c) : TH3(), TArrayC()
{
((TH3C&)h3c).Copy(*this);
}
//______________________________________________________________________________
void TH3C::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 127) fArray[bin]++;
}
//______________________________________________________________________________
void TH3C::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
if (newval < -127) fArray[bin] = -127;
if (newval > 127) fArray[bin] = 127;
}
//______________________________________________________________________________
void TH3C::Copy(TObject &newth3) const
{
//*-*-*-*-*-*-*Copy this 3-D histogram structure to newth3*-*-*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Copy((TH3C&)newth3);
TArrayC::Copy((TH3C&)newth3);
}
//______________________________________________________________________________
TH1 *TH3C::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH3C *newth3 = (TH3C*)Clone();
newth3->SetDirectory(0);
newth3->SetBit(kCanDelete);
newth3->AppendPad(option);
return newth3;
}
//______________________________________________________________________________
Stat_t TH3C::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH3C*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH3C::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Reset(option);
TArrayC::Reset();
// should also reset statistics once statistics are implemented for TH3
}
//______________________________________________________________________________
void TH3C::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2)*(fZaxis.GetNbins()+2);
fNcells = n;
TArrayC::Set(n);
}
//______________________________________________________________________________
void TH3C::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Char_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH3C::Streamer(TBuffer &R__b)
{
// Stream an object of class TH3C.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
TFile *file = (TFile*)R__b.GetParent();
if (file && file->GetVersion() < 22300) return;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH3C::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.ReadVersion(&R__s, &R__c);
TAtt3D::Streamer(R__b);
} else {
TH3::Streamer(R__b);
TArrayC::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH3C::IsA());
}
//====end of old versions
} else {
TH3C::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH3C& TH3C::operator=(const TH3C &h1)
{
if (this != &h1) ((TH3C&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH3C operator*(Float_t c1, TH3C &h1)
{
TH3C hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3C operator+(TH3C &h1, TH3C &h2)
{
TH3C hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3C operator-(TH3C &h1, TH3C &h2)
{
TH3C hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3C operator*(TH3C &h1, TH3C &h2)
{
TH3C hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3C operator/(TH3C &h1, TH3C &h2)
{
TH3C hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH3S)
//______________________________________________________________________________
// TH3S methods
//______________________________________________________________________________
TH3S::TH3S(): TH3()
{
}
//______________________________________________________________________________
TH3S::~TH3S()
{
}
//______________________________________________________________________________
TH3S::TH3S(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH3(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup)
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
TH3S::Set(fNcells);
}
//______________________________________________________________________________
TH3S::TH3S(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TH3S::Set(fNcells);
}
//______________________________________________________________________________
TH3S::TH3S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TH3S::Set(fNcells);
}
//______________________________________________________________________________
TH3S::TH3S(const TH3S &h3s) : TH3(), TArrayS()
{
((TH3S&)h3s).Copy(*this);
}
//______________________________________________________________________________
void TH3S::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 32767) fArray[bin]++;
}
//______________________________________________________________________________
void TH3S::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
if (newval < -32767) fArray[bin] = -32767;
if (newval > 32767) fArray[bin] = 32767;
}
//______________________________________________________________________________
void TH3S::Copy(TObject &newth3) const
{
//*-*-*-*-*-*-*Copy this 3-D histogram structure to newth3*-*-*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Copy((TH3S&)newth3);
TArrayS::Copy((TH3S&)newth3);
}
//______________________________________________________________________________
TH1 *TH3S::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH3S *newth3 = (TH3S*)Clone();
newth3->SetDirectory(0);
newth3->SetBit(kCanDelete);
newth3->AppendPad(option);
return newth3;
}
//______________________________________________________________________________
Stat_t TH3S::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH3S*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH3S::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Reset(option);
TArrayS::Reset();
// should also reset statistics once statistics are implemented for TH3
}
//______________________________________________________________________________
void TH3S::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Short_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH3S::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2)*(fZaxis.GetNbins()+2);
fNcells = n;
TArrayS::Set(n);
}
//______________________________________________________________________________
void TH3S::Streamer(TBuffer &R__b)
{
// Stream an object of class TH3S.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
TFile *file = (TFile*)R__b.GetParent();
if (file && file->GetVersion() < 22300) return;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH3S::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.ReadVersion(&R__s, &R__c);
TAtt3D::Streamer(R__b);
} else {
TH3::Streamer(R__b);
TArrayS::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH3S::IsA());
}
//====end of old versions
} else {
TH3S::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH3S& TH3S::operator=(const TH3S &h1)
{
if (this != &h1) ((TH3S&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH3S operator*(Float_t c1, TH3S &h1)
{
TH3S hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3S operator+(TH3S &h1, TH3S &h2)
{
TH3S hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3S operator-(TH3S &h1, TH3S &h2)
{
TH3S hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3S operator*(TH3S &h1, TH3S &h2)
{
TH3S hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3S operator/(TH3S &h1, TH3S &h2)
{
TH3S hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH3I)
//______________________________________________________________________________
// TH3I methods
//______________________________________________________________________________
TH3I::TH3I(): TH3()
{
}
//______________________________________________________________________________
TH3I::~TH3I()
{
}
//______________________________________________________________________________
TH3I::TH3I(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH3(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup)
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
TH3I::Set(fNcells);
}
//______________________________________________________________________________
TH3I::TH3I(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH3I::TH3I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayI::Set(fNcells);
}
//______________________________________________________________________________
TH3I::TH3I(const TH3I &h3i) : TH3(), TArrayI()
{
((TH3I&)h3i).Copy(*this);
}
//______________________________________________________________________________
void TH3I::AddBinContent(Int_t bin)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
if (fArray[bin] < 2147483647) fArray[bin]++;
}
//______________________________________________________________________________
void TH3I::AddBinContent(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==========================
Int_t newval = fArray[bin] + Int_t(w);
if (newval > -2147483647 && newval < 2147483647) {fArray[bin] = Int_t(newval); return;}
if (newval < -2147483647) fArray[bin] = -2147483647;
if (newval > 2147483647) fArray[bin] = 2147483647;
}
//______________________________________________________________________________
void TH3I::Copy(TObject &newth3) const
{
//*-*-*-*-*-*-*Copy this 3-D histogram structure to newth3*-*-*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Copy((TH3I&)newth3);
TArrayI::Copy((TH3I&)newth3);
}
//______________________________________________________________________________
TH1 *TH3I::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH3I *newth3 = (TH3I*)Clone();
newth3->SetDirectory(0);
newth3->SetBit(kCanDelete);
newth3->AppendPad(option);
return newth3;
}
//______________________________________________________________________________
Stat_t TH3I::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH3I*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH3I::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Reset(option);
TArrayI::Reset();
// should also reset statistics once statistics are implemented for TH3
}
//______________________________________________________________________________
void TH3I::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Int_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH3I::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2)*(fZaxis.GetNbins()+2);
fNcells = n;
TArrayI::Set(n);
}
//______________________________________________________________________________
TH3I& TH3I::operator=(const TH3I &h1)
{
if (this != &h1) ((TH3I&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH3I operator*(Float_t c1, TH3I &h1)
{
TH3I hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3I operator+(TH3I &h1, TH3I &h2)
{
TH3I hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3I operator-(TH3I &h1, TH3I &h2)
{
TH3I hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3I operator*(TH3I &h1, TH3I &h2)
{
TH3I hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3I operator/(TH3I &h1, TH3I &h2)
{
TH3I hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH3F)
//______________________________________________________________________________
// TH3F methods
//______________________________________________________________________________
TH3F::TH3F(): TH3()
{
}
//______________________________________________________________________________
TH3F::~TH3F()
{
}
//______________________________________________________________________________
TH3F::TH3F(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH3(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup)
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH3F::TH3F(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH3F::TH3F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayF::Set(fNcells);
}
//______________________________________________________________________________
TH3F::TH3F(const TH3F &h3f) : TH3(), TArrayF()
{
((TH3F&)h3f).Copy(*this);
}
//______________________________________________________________________________
void TH3F::Copy(TObject &newth3) const
{
//*-*-*-*-*-*-*Copy this 3-D histogram structure to newth3*-*-*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Copy((TH3F&)newth3);
TArrayF::Copy((TH3F&)newth3);
}
//______________________________________________________________________________
TH1 *TH3F::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH3F *newth3 = (TH3F*)Clone();
newth3->SetDirectory(0);
newth3->SetBit(kCanDelete);
newth3->AppendPad(option);
return newth3;
}
//______________________________________________________________________________
Stat_t TH3F::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH3F*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH3F::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Reset(option);
TArrayF::Reset();
// should also reset statistics once statistics are implemented for TH3
}
//______________________________________________________________________________
void TH3F::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Float_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH3F::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2)*(fZaxis.GetNbins()+2);
fNcells = n;
TArrayF::Set(n);
}
//______________________________________________________________________________
void TH3F::Streamer(TBuffer &R__b)
{
// Stream an object of class TH3F.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
TFile *file = (TFile*)R__b.GetParent();
if (file && file->GetVersion() < 22300) return;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH3F::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.ReadVersion(&R__s, &R__c);
TAtt3D::Streamer(R__b);
} else {
TH3::Streamer(R__b);
TArrayF::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH3F::IsA());
}
//====end of old versions
} else {
TH3F::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH3F& TH3F::operator=(const TH3F &h1)
{
if (this != &h1) ((TH3F&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH3F operator*(Float_t c1, TH3F &h1)
{
TH3F hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3F operator+(TH3F &h1, TH3F &h2)
{
TH3F hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3F operator-(TH3F &h1, TH3F &h2)
{
TH3F hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3F operator*(TH3F &h1, TH3F &h2)
{
TH3F hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3F operator/(TH3F &h1, TH3F &h2)
{
TH3F hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ClassImp(TH3D)
//______________________________________________________________________________
// TH3D methods
//______________________________________________________________________________
TH3D::TH3D(): TH3()
{
}
//______________________________________________________________________________
TH3D::~TH3D()
{
}
//______________________________________________________________________________
TH3D::TH3D(const char *name,const char *title,Int_t nbinsx,Axis_t xlow,Axis_t xup
,Int_t nbinsy,Axis_t ylow,Axis_t yup
,Int_t nbinsz,Axis_t zlow,Axis_t zup)
:TH3(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup)
{
//*-*-*-*-*-*-*-*-*Normal constructor for fix bin size 3-D histograms*-*-*-*-*
//*-* ==================================================
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH3D::TH3D(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
,Int_t nbinsy,const Float_t *ybins
,Int_t nbinsz,const Float_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH3D::TH3D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
,Int_t nbinsy,const Double_t *ybins
,Int_t nbinsz,const Double_t *zbins)
:TH3(name,title,nbinsx,xbins,nbinsy,ybins,nbinsz,zbins)
{
//*-*-*-*-*-*-*-*Normal constructor for variable bin size 3-D histograms*-*-*-*
//*-* =======================================================
TArrayD::Set(fNcells);
}
//______________________________________________________________________________
TH3D::TH3D(const TH3D &h3d) : TH3(), TArrayD()
{
((TH3D&)h3d).Copy(*this);
}
//______________________________________________________________________________
void TH3D::Copy(TObject &newth3) const
{
//*-*-*-*-*-*-*Copy this 3-D histogram structure to newth3*-*-*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Copy((TH3D&)newth3);
TArrayD::Copy((TH3D&)newth3);
}
//______________________________________________________________________________
TH1 *TH3D::DrawCopy(Option_t *option) const
{
TString opt = option;
opt.ToLower();
if (gPad && !opt.Contains("same")) gPad->Clear();
TH3D *newth3 = (TH3D*)Clone();
newth3->SetDirectory(0);
newth3->SetBit(kCanDelete);
newth3->AppendPad(option);
return newth3;
}
//______________________________________________________________________________
Stat_t TH3D::GetBinContent(Int_t bin) const
{
if (fBuffer) ((TH3D*)this)->BufferEmpty();
if (bin < 0) bin = 0;
if (bin >= fNcells) bin = fNcells-1;
if (!fArray) return 0;
return Stat_t (fArray[bin]);
}
//______________________________________________________________________________
void TH3D::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//*-* ===========================================
TH3::Reset(option);
TArrayD::Reset();
// should also reset statistics once statistics are implemented for TH3
}
//______________________________________________________________________________
void TH3D::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
if (bin < 0) return;
if (bin >= fNcells) return;
fArray[bin] = Double_t (content);
fEntries++;
}
//______________________________________________________________________________
void TH3D::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array
if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2)*(fZaxis.GetNbins()+2);
fNcells = n;
TArrayD::Set(n);
}
//______________________________________________________________________________
void TH3D::Streamer(TBuffer &R__b)
{
// Stream an object of class TH3D.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
TFile *file = (TFile*)R__b.GetParent();
if (file && file->GetVersion() < 22300) return;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 2) {
TH3D::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;
}
//====process old versions before automatic schema evolution
if (R__v < 2) {
R__b.ReadVersion();
TH1::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.ReadVersion(&R__s, &R__c);
TAtt3D::Streamer(R__b);
} else {
TH3::Streamer(R__b);
TArrayD::Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TH3D::IsA());
}
//====end of old versions
} else {
TH3D::Class()->WriteBuffer(R__b,this);
}
}
//______________________________________________________________________________
TH3D& TH3D::operator=(const TH3D &h1)
{
if (this != &h1) ((TH3D&)h1).Copy(*this);
return *this;
}
//______________________________________________________________________________
TH3D operator*(Float_t c1, TH3D &h1)
{
TH3D hnew = h1;
hnew.Scale(c1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3D operator+(TH3D &h1, TH3D &h2)
{
TH3D hnew = h1;
hnew.Add(&h2,1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3D operator-(TH3D &h1, TH3D &h2)
{
TH3D hnew = h1;
hnew.Add(&h2,-1);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3D operator*(TH3D &h1, TH3D &h2)
{
TH3D hnew = h1;
hnew.Multiply(&h2);
hnew.SetDirectory(0);
return hnew;
}
//______________________________________________________________________________
TH3D operator/(TH3D &h1, TH3D &h2)
{
TH3D hnew = h1;
hnew.Divide(&h2);
hnew.SetDirectory(0);
return hnew;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.