#include "LorentzVector.h"

ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >


class description - header file - source file - inheritance tree (.pdf)

class ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >

Inheritance Chart:
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >

    public:
~LorentzVector<ROOT::Math::PxPyPzM4D<double> >() ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Beta() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::BetaVector BoostToCM() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar ColinearRapidity() const const ROOT::Math::PxPyPzM4D<double>& Coordinates() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar E() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar e() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar energy() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Et() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Et2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Eta() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar eta() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Gamma() const void GetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& a, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& b, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& c, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& d) const void GetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar* dest) const bool isLightlike(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar tolerance = 100*std::numeric_limits<Scalar>::epsilon()) const bool isSpacelike() const bool isTimelike() const LorentzVector<ROOT::Math::PxPyPzM4D<double> >() LorentzVector<ROOT::Math::PxPyPzM4D<double> >(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& a, const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& b, const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& c, const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& d) LorentzVector<ROOT::Math::PxPyPzM4D<double> >(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >&) ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar M() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar M2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mag() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mag2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mass() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mass2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Mt() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mt() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Mt2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar mt2() const bool operator!=(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >& rhs) const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> > operator*(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& a) const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >& operator*=(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> > operator+() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> > operator-() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> > operator/(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar& a) const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >& operator/=(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >& operator=(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >&) bool operator==(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >& rhs) const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar P() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar P2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Perp2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar perp2() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Phi() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar phi() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Pt() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Px() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar px() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Py() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar py() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Pz() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar pz() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar R() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar r() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Rapidity() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Rho() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar rho() const void SetCoordinates(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar* src) void SetCoordinates(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar b, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar c, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar d) void SetE(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetEta(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetM(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetPhi(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetPt(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetPx(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetPy(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetPz(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar a) void SetXYZT(ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar x, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar y, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar z, ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar t) ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar T() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar t() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Theta() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar theta() const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> Vect() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar X() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar x() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Y() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar y() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar Z() const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >::Scalar z() const

Data Members

    private:
ROOT::Math::PxPyPzM4D<double> fCoordinates

Class Description

SetXYZT( v.x(), v.y(), v.z(), v.t() )
const CoordSystem & Coordinates()
void SetCoordinates( const Scalar src[] )
void SetCoordinates( Scalar a, Scalar b, Scalar c, Scalar d )
void GetCoordinates( Scalar& a, Scalar& b, Scalar& c, Scalar & d )
void GetCoordinates( Scalar dest[] )
bool operator==(const LorentzVector & rhs)
Scalar Px()
Scalar X()
Scalar Py()
Scalar Y()
Scalar Pz()
Scalar Z()
Scalar E()
Scalar T()
Scalar M2()
Scalar M()
Scalar R()
Scalar P()
Scalar P2()
Scalar Perp2( )
Scalar Pt()
Scalar Rho()
Scalar Mt2()
Scalar Mt()
Scalar Et2()
Scalar Et()
Scalar Phi()
Scalar Theta()
Scalar Eta()
::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> > Vect()
return t()
return operator*( Scalar(-1) )
LorentzVector<CoordinateType> v(*this);
v.Negate();
Scalar Rapidity()
Scalar ColinearRapidity()
bool isTimelike( )
bool isLightlike( Scalar tolerance = 100*std::numeric_limits<Scalar>::epsilon() )
bool isSpacelike( )
BetaVector BoostToCM( )
Scalar Beta()
Scalar Gamma()
Scalar x()
Scalar y()
Scalar z()
Scalar px()
Scalar py()
Scalar pz()
Scalar e()
Scalar r()
Scalar theta()
Scalar phi()
Scalar rho()
Scalar eta()
Scalar perp2()
Scalar mag2()
Scalar mag()
Scalar mt()
Scalar mt2()
Scalar energy()
---- requested by CMS ---
Scalar mass()
Scalar mass2()
void SetEta( Scalar a )
void SetPhi( Scalar a )

Last update: Tue Jul 11 11:46:40 2006


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.