// @(#)root/mathcore:$Name: $:$Id: LorentzVector.h,v 1.10 2006/05/03 13:10:22 moneta Exp $
// Authors: W. Brown, M. Fischler, L. Moneta 2005
/**********************************************************************
* *
* Copyright (c) 2005 , LCG ROOT MathLib Team *
* *
* *
**********************************************************************/
// Header file for class LorentzVector
//
// Created by: moneta at Tue May 31 17:06:09 2005
// Major mods by: fischler at Wed Jul 20 2005
//
// Last update: $Id: LorentzVector.h,v 1.10 2006/05/03 13:10:22 moneta Exp $
//
#ifndef ROOT_Math_GenVector_LorentzVector
#define ROOT_Math_GenVector_LorentzVector 1
#include "Math/GenVector/GenVectorIO.h"
#include "Math/GenVector/PxPyPzE4D.h"
#include "Math/GenVector/DisplacementVector3D.h"
namespace ROOT {
namespace Math {
/**
Class describing a generic LorentzVector in the 4D space-time,
using the specified coordinate system for the spatial vector part.
The metric used for the LorentzVector is (-,-,-,+).
In the case of LorentzVector we don't distinguish the concepts
of points and displacement vectors as in the 3D case,
since the main use case for 4D Vectors is to describe the kinematics of
relativistic particles. A LorentzVector behaves like a
DisplacementVector in 4D. The Minkowski components could be viewed as
v and t, or for kinematic 4-vectors, as p and E.
@ingroup GenVector
*/
template< class CoordSystem >
class LorentzVector {
public:
// ------ ctors ------
typedef typename CoordSystem::Scalar Scalar;
typedef CoordSystem CoordinateType;
/**
default constructor of an empty vector (Px = Py = Pz = E = 0 )
*/
LorentzVector ( ) : fCoordinates() { }
/**
generic constructors from four scalar values.
The association between values and coordinate depends on the
coordinate system. For PxPyPzE4D,
\param a scalar value (Px)
\param b scalar value (Py)
\param c scalar value (Pz)
\param d scalar value (E)
*/
LorentzVector(const Scalar & a,
const Scalar & b,
const Scalar & c,
const Scalar & d) :
fCoordinates(a , b, c, d) { }
/**
constructor from a LorentzVector expressed in different
coordinates, or using a different Scalar type
*/
template< class Coords >
explicit LorentzVector(const LorentzVector<Coords> & v ) :
fCoordinates( v.Coordinates() ) { }
/**
Construct from a foreign 4D vector type, for example, HepLorentzVector
Precondition: v must implement methods x(), y(), z(), and t()
*/
template<class ForeignLorentzVector>
explicit LorentzVector( const ForeignLorentzVector & v) :
fCoordinates(PxPyPzE4D<Scalar>( v.x(), v.y(), v.z(), v.t() ) ) { }
#ifdef LATER
/**
construct from a generic linear algebra vector implementing operator []
and with a size of at least 4. This could be also a C array
In this case v[0] is the first data member
( Px for a PxPyPzE4D base)
\param v LA vector
\param index0 index of first vector element (Px)
*/
template< class LAVector >
explicit LorentzVector(const LAVector & v, size_t index0 ) {
fCoordinates = CoordSystem ( v[index0], v[index0+1], v[index0+2], v[index0+3] );
}
#endif
// compiler-generated copy ctor and dtor are fine.
// ------ assignment ------
/**
Assignment operator from a lorentz vector of arbitrary type
*/
template< class OtherCoords >
LorentzVector & operator= ( const LorentzVector<OtherCoords> & v) {
fCoordinates = v.Coordinates();
return *this;
}
/**
assignment from any other Lorentz vector implementing
x(), y(), z() and t()
*/
template<class ForeignLorentzVector>
LorentzVector & operator = ( const ForeignLorentzVector & v) {
SetXYZT( v.x(), v.y(), v.z(), v.t() );
return *this;
}
#ifdef LATER
/**
assign from a generic linear algebra vector implementing operator []
and with a size of at least 4
In this case v[0] is the first data member
( Px for a PxPyPzE4D base)
\param v LA vector
\param index0 index of first vector element (Px)
*/
template< class LAVector >
LorentzVector & AssignFrom(const LAVector & v, size_t index0=0 ) {
fCoordinates.SetCoordinates( v[index0], v[index0+1], v[index0+2], v[index0+3] );
return *this;
}
#endif
// ------ Set, Get, and access coordinate data ------
/**
Retrieve a const reference to the coordinates object
*/
const CoordSystem & Coordinates() const {
return fCoordinates;
}
/**
Set internal data based on an array of 4 Scalar numbers
*/
void SetCoordinates( const Scalar src[] )
{ fCoordinates.SetCoordinates(src); }
/**
Set internal data based on 4 Scalar numbers
*/
void SetCoordinates( Scalar a, Scalar b, Scalar c, Scalar d )
{ fCoordinates.SetCoordinates(a, b, c, d); }
/**
Set internal data based on 4 Scalars at *begin to *end
*/
template< class IT >
void SetCoordinates( IT begin, IT end )
{ IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
assert (++begin==end);
SetCoordinates (*a,*b,*c,*d);
}
/**
get internal data into 4 Scalar numbers
*/
void GetCoordinates( Scalar& a, Scalar& b, Scalar& c, Scalar & d ) const
{ fCoordinates.GetCoordinates(a, b, c, d); }
/**
get internal data into an array of 4 Scalar numbers
*/
void GetCoordinates( Scalar dest[] ) const
{ fCoordinates.GetCoordinates(dest); }
/**
get internal data into 4 Scalars at *begin to *end
*/
template <class IT>
void GetCoordinates( IT begin, IT end ) const
{ IT a = begin; IT b = ++begin; IT c = ++begin; IT d = ++begin;
assert (++begin==end);
GetCoordinates (*a,*b,*c,*d);
}
/**
set the values of the vector from the cartesian components (x,y,z,t)
(if the vector is held in another coordinates, like (Pt,eta,phi,m)
then (x, y, z, t) are converted to that form)
*/
void SetXYZT (Scalar x, Scalar y, Scalar z, Scalar t) {
fCoordinates = PxPyPzE4D<Scalar> (x,y,z,t);
}
// ------------------- Equality -----------------
/**
Exact equality
*/
bool operator==(const LorentzVector & rhs) const {
return fCoordinates==rhs.fCoordinates;
}
bool operator!= (const LorentzVector & rhs) const {
return !(operator==(rhs));
}
// ------ Individual element access, in various coordinate systems ------
// individual coordinate accessors in various coordinate systems
/**
spatial X component
*/
Scalar Px() const { return fCoordinates.Px(); }
Scalar X() const { return Px(); }
/**
spatial Y component
*/
Scalar Py() const { return fCoordinates.Py(); }
Scalar Y() const { return Py(); }
/**
spatial Z component
*/
Scalar Pz() const { return fCoordinates.Pz(); }
Scalar Z() const { return Pz(); }
/**
return 4-th component (time, or energy for a 4-momentum vector)
*/
Scalar E() const { return fCoordinates.E(); }
Scalar T() const { return E(); }
/**
return magnitude (mass) squared M2 = T**2 - X**2 - Y**2 - Z**2
(we use -,-,-,+ metric)
*/
Scalar M2() const { return fCoordinates.M2(); }
/**
return magnitude (mass) using the (-,-,-,+) metric.
If M2 is negative (space-like vector) a GenVector_exception
is suggested and if continuing, - sqrt( -M2) is returned
*/
Scalar M() const { return fCoordinates.M();}
/**
return the spatial (3D) magnitude ( sqrt(X**2 + Y**2 + Z**2) )
*/
Scalar R() const { return fCoordinates.R(); }
Scalar P() const { return R(); }
/**
return the square of the spatial (3D) magnitude ( X**2 + Y**2 + Z**2 )
*/
Scalar P2() const { return P() * P(); }
/**
return the square of the transverse spatial component ( X**2 + Y**2 )
*/
Scalar Perp2( ) const { return fCoordinates.Perp2();}
/**
return the transverse spatial component sqrt ( X**2 + Y**2 )
*/
Scalar Pt() const { return fCoordinates.Pt();}
Scalar Rho() const { return Pt();}
/**
return the transverse mass squared
\f[ m_t^2 = E^2 - p{_z}^2 \f]
*/
Scalar Mt2() const { return fCoordinates.Mt2(); }
/**
return the transverse mass
\f[ \sqrt{ m_t^2 = E^2 - p{_z}^2} X sign(E^ - p{_z}^2) \f]
*/
Scalar Mt() const { return fCoordinates.Mt(); }
/**
return the transverse energy squared
\f[ e_t = \frac{E^2 p_{\perp}^2 }{ |p|^2 } \f]
*/
Scalar Et2() const { return fCoordinates.Et2(); }
/**
return the transverse energy
\f[ e_t = \sqrt{ \frac{E^2 p_{\perp}^2 }{ |p|^2 } } X sign(E) \f]
*/
Scalar Et() const { return fCoordinates.Et(); }
/**
azimuthal Angle
*/
Scalar Phi() const { return fCoordinates.Phi();}
/**
polar Angle
*/
Scalar Theta() const { return fCoordinates.Theta(); }
/**
pseudorapidity
\f[ \eta = - \ln { \tan { \frac { \theta} {2} } } \f]
*/
Scalar Eta() const { return fCoordinates.Eta(); }
/**
get the spatial components of the Vector in a
DisplacementVector based on Cartesian Coordinates
*/
::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> > Vect() const {
return ::ROOT::Math::DisplacementVector3D<Cartesian3D<Scalar> >( X(), Y(), Z() );
}
// ------ Operations combining two Lorentz vectors ------
/**
scalar (Dot) product of two LorentzVector vectors (metric is -,-,-,+)
Enable the product using any other LorentzVector implementing
the x(), y() , y() and t() member functions
\param q any LorentzVector implementing the x(), y() , z() and t()
member functions
\return the result of v.q of type according to the base scalar type of v
*/
template< class OtherLorentzVector >
Scalar Dot(const OtherLorentzVector & q) const {
return t()*q.t() - x()*q.x() - y()*q.y() - z()*q.z();
}
/**
Self addition with another Vector ( v+= q )
Enable the addition with any other LorentzVector
\param q any LorentzVector implementing the x(), y() , z() and t()
member functions
*/
template< class OtherLorentzVector >
LorentzVector & operator += ( const OtherLorentzVector & q) {
SetXYZT( X() + q.X(), Y() + q.Y(), Z() + q.Z(), E() + q.E() );
return *this;
}
/**
Self subtraction of another Vector from this ( v-= q )
Enable the addition with any other LorentzVector
\param q any LorentzVector implementing the x(), y() , z() and t()
member functions
*/
template< class OtherLorentzVector >
LorentzVector & operator -= ( const OtherLorentzVector & q) {
SetXYZT( x() - q.x(), y() - q.y(), z() - q.z(), t() - q.t() );
return *this;
}
/**
addition of two LorentzVectors (v3 = v1 + v2)
Enable the addition with any other LorentzVector
\param v2 any LorentzVector implementing the x(), y() , z() and t()
member functions
\return a new LorentzVector of the same type as v1
*/
template<class OtherLorentzVector>
LorentzVector operator + ( const OtherLorentzVector & v2) const {
LorentzVector<CoordinateType> v3(*this);
v3 += v2;
return v3;
}
/**
subtraction of two LorentzVectors (v3 = v1 - v2)
Enable the subtraction of any other LorentzVector
\param v2 any LorentzVector implementing the x(), y() , z() and t()
member functions
\return a new LorentzVector of the same type as v1
*/
template<class OtherLorentzVector>
LorentzVector operator - ( const OtherLorentzVector & v2) const {
LorentzVector<CoordinateType> v3(*this);
v3 -= v2;
return v3;
}
//--- scaling operations ------
/**
multiplication by a scalar quantity v *= a
*/
LorentzVector & operator *= (Scalar a) {
fCoordinates.Scale(a);
return *this;
}
/**
division by a scalar quantity v /= a
*/
LorentzVector & operator /= (Scalar a) {
fCoordinates.Scale(1/a);
return *this;
}
/**
product of a LorentzVector by a scalar quantity
\param a scalar quantity of type a
\return a new mathcoreLorentzVector q = v * a same type as v
*/
LorentzVector operator * ( const Scalar & a) const {
LorentzVector tmp(*this);
tmp *= a;
return tmp;
}
/**
Divide a LorentzVector by a scalar quantity
\param a scalar quantity of type a
\return a new mathcoreLorentzVector q = v / a same type as v
*/
LorentzVector<CoordSystem> operator / ( const Scalar & a) const {
LorentzVector<CoordSystem> tmp(*this);
tmp /= a;
return tmp;
}
/**
Negative of a LorentzVector (q = - v )
\return a new LorentzVector with opposite direction and time
*/
LorentzVector operator - () const {
//LorentzVector<CoordinateType> v(*this);
//v.Negate();
return operator*( Scalar(-1) );
}
LorentzVector operator + () const {
return *this;
}
// ---- Relativistic Properties ----
/**
Rapidity relative to the Z axis: .5 log [(E+Pz)/(E-Pz)]
*/
Scalar Rapidity() const {
// TODO - It would be good to check that E > Pz and use the Throw()
// mechanism or at least load a NAN if not.
// We should then move the code to a .cpp file.
Scalar e = E();
Scalar pz = Pz();
return .5* std::log( (e+pz)/(e-pz) );
}
/**
Rapidity in the direction of travel: atanh (|P|/E)=.5 log[(E+P)/(E-P)]
*/
Scalar ColinearRapidity() const {
// TODO - It would be good to check that E > Pz and use the Throw()
// mechanism or at least load a NAN if not.
Scalar e = E();
Scalar p = P();
return .5* std::log( (e+p)/(e-p) );
}
/**
Determine if momentum-energy can represent a physical massive particle
*/
bool isTimelike( ) const {
Scalar e = E(); Scalar p = P(); return e*e > p*p;
}
/**
Determine if momentum-energy can represent a massless particle
*/
bool isLightlike( Scalar tolerance
= 100*std::numeric_limits<Scalar>::epsilon() ) const {
Scalar e = E(); Scalar p = P(); Scalar delta = e-p;
if ( e==0 ) return p==0;
return delta*delta < tolerance * e*e;
}
/**
Determine if momentum-energy is spacelike, and represents a tachyon
*/
bool isSpacelike( ) const {
Scalar e = E(); Scalar p = P(); return e*e < p*p;
}
typedef DisplacementVector3D< Cartesian3D<Scalar> > BetaVector;
/**
The beta vector for the boost that would bring this vector into
its center of mass frame (zero momentum)
*/
BetaVector BoostToCM( ) const {
if (E() == 0) {
if (P() == 0) {
return BetaVector();
} else {
// TODO - should attempt to Throw with msg about
// boostVector computed for LorentzVector with t=0
return -Vect()/E();
}
}
if (M2() <= 0) {
// TODO - should attempt to Throw with msg about
// boostVector computed for a non-timelike LorentzVector
}
return -Vect()/E();
}
/**
The beta vector for the boost that would bring this vector into
its center of mass frame (zero momentum)
*/
template <class Other4Vector>
BetaVector BoostToCM(const Other4Vector& v ) const {
Scalar eSum = E() + v.E();
DisplacementVector3D< Cartesian3D<Scalar> > vecSum = Vect() + v.Vect();
if (eSum == 0) {
if (vecSum.Mag2() == 0) {
return BetaVector();
} else {
// TODO - should attempt to Throw with msg about
// boostToCM computed for two 4-vectors with combined t=0
return BetaVector(vecSum/eSum);
}
// TODO - should attempt to Throw with msg about
// boostToCM computed for two 4-vectors with combined e=0
}
return BetaVector (vecSum * (-1./eSum));
}
//beta and gamma
/**
Return beta scalar value
*/
Scalar Beta() const {
if ( E() == 0 ) {
if ( P2() == 0)
// to avoid Nan
return 0;
else {
GenVector_exception e ("LorentzVector::Beta() - beta computed for LorentzVector with t = 0. Return an Infinite result");
Throw(e);
return 1./E();
}
}
if ( M2() <= 0 ) {
GenVector_exception e ("LorentzVector::Beta() - beta computed for non-timelike LorentzVector . Result is physically meaningless" );
Throw(e);
}
return P() / E();
}
/**
Return Gamma scalar value
*/
Scalar Gamma() const {
Scalar v2 = P2();
Scalar t2 = E()*E();
if (E() == 0) {
if ( P2() == 0) {
return 1;
} else {
GenVector_exception e ("LorentzVector::Gamma() - gamma computed for LorentzVector with t = 0. Return a zero result");
Throw(e);
return 0;
}
}
if ( t2 < v2 ) {
GenVector_exception e ("LorentzVector::Gamma() - gamma computed for a spacelike LorentzVector. Imaginary result");
Throw(e);
return 0;
}
else if ( t2 == v2 ) {
GenVector_exception e ("LorentzVector::Gamma() - gamma computed for a lightlike LorentzVector. Infinite result");
Throw(e);
}
return 1./std::sqrt(1. - v2/t2 );
} /* gamma */
// ---- Limited backward name compatibility with CLHEP ----
Scalar x() const { return X(); }
Scalar y() const { return Y(); }
Scalar z() const { return Z(); }
Scalar t() const { return E(); }
Scalar px() const { return X(); }
Scalar py() const { return Y(); }
Scalar pz() const { return Z(); }
Scalar e() const { return E(); }
Scalar r() const { return R(); }
Scalar theta() const { return Theta(); }
Scalar phi() const { return Phi(); }
Scalar rho() const { return Rho(); }
Scalar eta() const { return Eta(); }
Scalar perp2() const { return Perp2(); }
Scalar mag2() const { return M2(); }
Scalar mag() const { return M(); }
Scalar mt() const { return Mt(); }
Scalar mt2() const { return Mt2(); }
//---- requested by CMS ---
Scalar energy() const { return E(); }
Scalar mass() const { return M(); }
Scalar mass2() const { return M2(); }
/**
Single-component update
*/
void SetE ( Scalar a ) { fCoordinates.SetE (a); }
void SetEta( Scalar a ) { fCoordinates.SetEta(a); }
void SetM ( Scalar a ) { fCoordinates.SetM (a); }
void SetPhi( Scalar a ) { fCoordinates.SetPhi(a); }
void SetPt ( Scalar a ) { fCoordinates.SetPt (a); }
void SetPx ( Scalar a ) { fCoordinates.SetPx (a); }
void SetPy ( Scalar a ) { fCoordinates.SetPy (a); }
void SetPz ( Scalar a ) { fCoordinates.SetPz (a); }
private:
CoordSystem fCoordinates;
}; // LorentzVector<>
// global nethods
/**
Scale of a LorentzVector with a scalar quantity a
\param a scalar quantity of typpe a
\param v mathcore::LorentzVector based on any coordinate system
\return a new mathcoreLorentzVector q = v * a same type as v
*/
template< class CoordSystem >
LorentzVector<CoordSystem> operator *
( const typename LorentzVector<CoordSystem>::Scalar & a,
const LorentzVector<CoordSystem>& v) {
LorentzVector<CoordSystem> tmp(v);
tmp *= a;
return tmp;
}
// ------------- I/O to/from streams -------------
template< class char_t, class traits_t, class Coords >
inline
std::basic_ostream<char_t,traits_t> &
operator << ( std::basic_ostream<char_t,traits_t> & os
, LorentzVector<Coords> const & v
)
{
if( !os ) return os;
typename Coords::Scalar a, b, c, d;
v.GetCoordinates(a, b, c, d);
if( detail::get_manip( os, detail::bitforbit ) ) {
detail::set_manip( os, detail::bitforbit, '\00' );
// TODO: call MF's bitwise-accurate functions on each of a, b, c, d
}
else {
os << detail::get_manip( os, detail::open ) << a
<< detail::get_manip( os, detail::sep ) << b
<< detail::get_manip( os, detail::sep ) << c
<< detail::get_manip( os, detail::sep ) << d
<< detail::get_manip( os, detail::close );
}
return os;
} // op<< <>()
template< class char_t, class traits_t, class Coords >
inline
std::basic_istream<char_t,traits_t> &
operator >> ( std::basic_istream<char_t,traits_t> & is
, LorentzVector<Coords> & v
)
{
if( !is ) return is;
typename Coords::Scalar a, b, c, d;
if( detail::get_manip( is, detail::bitforbit ) ) {
detail::set_manip( is, detail::bitforbit, '\00' );
// TODO: call MF's bitwise-accurate functions on each of a, b, c
}
else {
detail::require_delim( is, detail::open ); is >> a;
detail::require_delim( is, detail::sep ); is >> b;
detail::require_delim( is, detail::sep ); is >> c;
detail::require_delim( is, detail::sep ); is >> d;
detail::require_delim( is, detail::close );
}
if( is )
v.SetCoordinates(a, b, c, d);
return is;
} // op>> <>()
} // end namespace Math
} // end namespace ROOT
#endif
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.