library: libTMVA
#include "MethodBase.h"

TMVA::MethodBase


class description - header file - source file
viewCVS header - viewCVS source

class TMVA::MethodBase: public TMVA::IMethod

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
 
    This is an abstract class, constructors will not be documented.
    Look at the header to check for available constructors.

public:
virtual~MethodBase()
voidTObject::AbstractMethod(const char* method) const
virtual voidTObject::AppendPad(Option_t* option = "")
virtual voidTObject::Browse(TBrowser* b)
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTObject::Clear(Option_t* = "")
virtual TObject*TObject::Clone(const char* newname = "") const
virtual Int_tTObject::Compare(const TObject* obj) const
virtual voidTObject::Copy(TObject& object) const
virtual const TMVA::Ranking*TMVA::IMethod::CreateRanking()
TMVA::DataSet&Data() const
virtual voidDeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() const
virtual TObject*TObject::DrawClone(Option_t* option = "") const
virtual voidTObject::Dump() const
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
Double_tGetEffForRoot(Double_t)
virtual Double_tGetEfficiency(TString, TTree*)
Double_tGetEventVal(Int_t ivar) const
Double_tGetEventValNormalized(Int_t ivar) const
Double_tGetEventWeight() const
virtual const char*TObject::GetIconName() const
const TString&GetInputExp(int i) const
const TString&GetInputVar(int i) const
virtual const TString&GetJobName() const
virtual const TString&GetMethodName() const
virtual const TString&GetMethodTitle() const
virtual const TMVA::Types::EMVAGetMethodType() const
virtual Double_tGetmuTransform(TTree*)
virtual Double_tGetMvaValue()
virtual const char*GetName() const
Int_tGetNvar() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Double_tGetOptimalSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
virtual Option_t*TObject::GetOption() const
TStringGetOptions() const
virtual TMVA::Types::EPreprocessingMethodGetPreprocessingMethod() const
virtual Double_tGetSeparation()
virtual Double_tGetSignificance()
TTree*GetTestTree() const
static TMVA::MethodBase*GetThisBase()
virtual const char*TObject::GetTitle() const
virtual Double_tGetTrainingEfficiency(TString)
TTree*GetTrainingTree() const
virtual UInt_tTObject::GetUniqueID() const
virtual TStringGetWeightFileDir() const
virtual TStringGetWeightFileExtension() const
TStringGetWeightFileName() const
TMVA::MethodBase::EWeightFileTypeGetWeightFileType() const
Double_tGetXmax(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tGetXmax(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tGetXmin(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tGetXmin(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual ULong_tTObject::Hash() const
Bool_tHasTrainingTree() const
static Double_tIGetEffForRoot(Double_t)
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidTObject::Inspect() const
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
virtual Bool_tIsOK() const
Bool_tTObject::IsOnHeap() const
virtual Bool_tIsSignalLike()
virtual Bool_tTObject::IsSortable() const
Bool_tTObject::IsZombie() const
virtual voidTObject::ls(Option_t* option = "") const
voidTObject::MayNotUse(const char* method) const
Double_tNorm(Int_t ivar, Double_t x) const
Double_tNorm(TString var, Double_t x) const
virtual Bool_tTObject::Notify()
static voidTObject::operator delete(void* ptr)
static voidTObject::operator delete(void* ptr, void* vp)
static voidTObject::operator delete[](void* ptr)
static voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TMVA::IMethod&TMVA::IMethod::operator=(const TMVA::IMethod&)
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTObject::Pop()
virtual voidPrepareEvaluationTree(TTree* theTestTree)
virtual voidTObject::Print(Option_t* option = "") const
virtual voidProcessOptions()
virtual Int_tTObject::Read(const char* name)
virtual voidReadStateFromFile()
virtual voidReadStateFromStream(istream& i)
virtual Bool_tReadTestEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType)
Bool_tReadTrainingEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType)
virtual voidReadWeightsFromStream(istream& i)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") const
virtual voidTObject::SavePrimitive(ostream& out, Option_t* option = "")
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
virtual voidTObject::SetDrawOption(Option_t* option = "")
static voidTObject::SetDtorOnly(void* obj)
virtual voidSetJobName(TString jobName)
voidSetMethodName(TString methodName)
voidSetMethodTitle(TString methodTitle)
voidSetMethodType(TMVA::Types::EMVA methodType)
voidSetNvar(Int_t n)
static voidTObject::SetObjectStat(Bool_t stat)
voidSetPreprocessingMethod(TMVA::Types::EPreprocessingMethod m)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidSetVerbose(Bool_t v = kTRUE)
virtual voidSetWeightFileDir(TString fileDir)
virtual voidSetWeightFileExtension(TString fileExtension)
voidSetWeightFileName(TString)
voidSetWeightFileType(TMVA::MethodBase::EWeightFileType w)
voidSetXmax(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidSetXmax(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidSetXmin(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidSetXmin(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
virtual voidTest(TTree* theTestTree = 0)
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTestInit(TTree* theTestTree = 0)
virtual voidTMVA::IMethod::Train()
voidTrainMethod()
virtual voidTObject::UseCurrentStyle()
Bool_tVerbose() const
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) const
virtual voidWriteEvaluationHistosToFile(TDirectory* targetDir)
virtual voidWriteMonitoringHistosToFile() const
voidWriteStateToFile() const
virtual voidWriteStateToStream(ostream& o) const
virtual voidWriteWeightsToStream(ostream& o) const
protected:
TDirectory*BaseDir() const
Bool_tCheckSanity(TTree* theTree = 0)
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidEnableLooseOptions(Bool_t b = kTRUE)
TMVA::MethodBase::ECutOrientationGetCutOrientation() const
TMVA::Types::ESBTypeGetPreprocessingType() const
Double_tGetSignalReferenceCut() const
const TString&GetTestvarName() const
const TString&GetTestvarPrefix() const
const TList&ListOfOptions() const
TDirectory*LocalTDir() const
voidTObject::MakeZombie()
voidParseOptions(Bool_t verbose = kTRUE)
voidPrintOptions() const
voidReadOptionsFromStream(istream& istr)
voidResetThisBase()
voidSetPreprocessingType(TMVA::Types::ESBType t)
voidSetSignalReferenceCut(Double_t cut)
voidSetTestvarName()
voidSetTestvarName(TString v)
voidSetTestvarPrefix(TString prefix)
voidStatistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Bool_t norm = kFALSE)
voidWriteOptionsToStream(ostream& o) const
private:
voidInit()
Bool_tLooseOptionCheckingEnabled() const
voidSetBaseDir(TDirectory* d)

Data Members

public:
enum EWeightFileType { kROOT
kTEXT
};
enum ECutOrientation { kNegative
kPositive
};
enum TObject::EStatusBits { kCanDelete
kMustCleanup
kObjInCanvas
kIsReferenced
kHasUUID
kCannotPick
kNoContextMenu
kInvalidObject
};
enum TObject::[unnamed] { kIsOnHeap
kNotDeleted
kZombie
kBitMask
kSingleKey
kOverwrite
kWriteDelete
};
protected:
TMVA::Ranking*fRankingranking
vector<TString>*fInputVarsvector of input variables used in MVA
Bool_tfIsOKstatus of sanity checks
TH1*fHistS_plotbinMVA plots used for graphics representation (signal)
TH1*fHistB_plotbinMVA plots used for graphics representation (background)
TH1*fHistS_highbinMVA plots used for efficiency calculations (signal)
TH1*fHistB_highbinMVA plots used for efficiency calculations (background)
TH1*fEffSefficiency plot (signal)
TH1*fEffBefficiency plot (background)
TH1*fEffBvsSbackground efficiency versus signal efficiency
TH1*fRejBvsSbackground rejection (=1-eff.) versus signal efficiency
TH1*fHistBhatSworking histograms needed for mu-transform (signal)
TH1*fHistBhatBworking histograms needed for mu-transform (background)
TH1*fHistMuSmu-transform (signal)
TH1*fHistMuBmu-transform (background)
TH1*fTrainEffSTraining efficiency plot (signal)
TH1*fTrainEffBTraining efficiency plot (background)
TH1*fTrainEffBvsSTraining background efficiency versus signal efficiency
TH1*fTrainRejBvsSTraining background rejection (=1-eff.) versus signal efficiency
Double_tfX
Double_tfMode
TGraph*fGraphSgraphs used for splines for efficiency (signal)
TGraph*fGraphBgraphs used for splines for efficiency (background)
TGraph*fGrapheffBvsSgraphs used for splines for signal eff. versus background eff.
TMVA::PDF*fSplSPDFs of MVA distribution (signal)
TMVA::PDF*fSplBPDFs of MVA distribution (background)
TSpline*fSpleffBvsSsplines for signal eff. versus background eff.
TGraph*fGraphTrainSgraphs used for splines for training efficiency (signal)
TGraph*fGraphTrainBgraphs used for splines for training efficiency (background)
TGraph*fGraphTrainEffBvsSgraphs used for splines for training signal eff. versus background eff.
TMVA::PDF*fSplTrainSPDFs of training MVA distribution (signal)
TMVA::PDF*fSplTrainBPDFs of training MVA distribution (background)
TSpline*fSplTrainEffBvsSsplines for training signal eff. versus background eff.
Int_tfNbinsnumber of bins in representative histograms
Int_tfNbinsHnumber of bins in evaluation histograms
TMVA::MethodBase::ECutOrientationfCutOrientation+1 if Sig>Bkg, -1 otherwise
TMVA::TSpline1*fSplRefShelper splines for RootFinder (signal)
TMVA::TSpline1*fSplRefBhelper splines for RootFinder (background)
TMVA::TSpline1*fSplTrainRefShelper splines for RootFinder (signal)
TMVA::TSpline1*fSplTrainRefBhelper splines for RootFinder (background)
TMVA::OptionBase*fLastDeclaredOptionlast declared option
TListfListOfOptionsoption list
TMVA::MsgLoggerfLoggermessage logger
private:
Double_tfSignalReferenceCutminimum requirement on the MVA output to declare an event signal-like
TMVA::Types::ESBTypefPreprocessingTypethis is the event type (sig or bgd) assumed for preprocessing
TMVA::DataSet&fData! the data set
Double_t*fXminNorm[3]! minimum value for correlated/decorrelated/PCA variable
Double_t*fXmaxNorm[3]! maximum value for correlated/decorrelated/PCA variable
TStringfJobNamename of job -> user defined, appears in weight files
TStringfMethodNamename of the method (set in derived class)
TMVA::Types::EMVAfMethodTypetype of method (set in derived class)
TStringfMethodTitleuser-defined title for method (used for weight-file names)
TStringfTestvarvariable used in evaluation, etc (mostly the MVA)
TStringfTestvarPrefix'MVA_' prefix of MVA variable
TStringfOptionsoptions string
Int_tfNvarnumber of input variables
TDirectory*fBaseDirbase director, needed to know where to jump back from localDir
TStringfFileExtensionextension used in weight files (default: ".weights")
TStringfFileDirunix sub-directory for weight files (default: "weights")
TStringfWeightFileweight file name
TMVA::MethodBase::EWeightFileTypefWeightFileTypeThe type of weight file {kROOT,kTEXT}
Double_tfMeanSmean (signal)
Double_tfMeanBmean (background)
Double_tfRmsSRMS (signal)
Double_tfRmsBRMS (background)
Double_tfXminminimum (signal and background)
Double_tfXmaxmaximum (signal and background)
Bool_tfUseDecorrUse decorrelated Variables (kept for backward compatibility)
TMVA::Types::EPreprocessingMethodfPreprocessingMethodDecorrelation, PCA, etc.
TStringfPreprocessingStringlabels preprocessing method
TStringfPreprocessingTypeStringlabels preprocessing type
Bool_tfVerboseverbose flag
Bool_tfHelphelp flag
Bool_tfLooseOptionCheckingEnabledchecker for option string
static TMVA::MethodBase*fgThisBasethis pointer

Class Description


/*
  Virtual base Class for all MVA method
  MethodBase hosts several specific evaluation methods

  The kind of MVA that provides optimal performance in an analysis strongly 
  depends on the particular application. The evaluation factory provides a 
  number of numerical benchmark results to directly assess the performance 
  of the MVA training on the independent test sample. These are:
  
  The MVA standard output also prints the linear correlation coefficients between 
  signal and background, which can be useful to eliminate variables that exhibit too 
  strong correlations.
*/
_______________________________________________________________________
~MethodBase( void )
 default destructur
void ParseOptions( Bool_t verbose )
 options parser
void Init()
 default initialisation called by all constructors
void DeclareOptions()
 define the options (their key words) that can be set in the option string 
 here the options valid for ALL MVA methods are declared.
 know options: Preprocess=None,Decorrelated,PCA  to use decorrelated variables 
                                                 instead of the original ones
               PreprocessType=Signal,Background  which decorrelation matrix to use
                                                 in the method. Only the Likelihood
                                                 Method can make proper use of independent
                                                 transformations of signal and background
               V  for Verbose output (!V) for non verbos
               H  for Help 
void ProcessOptions()
 the option string is decoded, for availabel options see "DeclareOptions"
void TrainMethod()
 all histograms should be created in the method's subdirectory
void WriteStateToStream(std::ostream& o)
 general method used in writing the header of the weight files where
 the used variables, preprocessing type etc. is specified
void WriteStateToFile()
 Function to write options and weights to file
void ReadStateFromFile()
 Function to write options and weights to file
void ReadStateFromStream( std::istream& fin )
 read the header from the weight files of the different MVA methods
Double_t GetEventValNormalized(Int_t ivar)
 return the normalized event variable (normalized to interval [0,1]
TDirectory * BaseDir( void )
 returns the ROOT directory where info/histograms etc of the 
 corresponding MVA method are stored
void SetWeightFileName( TString theWeightFile)
 set the weight file name (depreciated)
TString GetWeightFileName()
 retrieve weight file name
Bool_t CheckSanity( TTree* theTree )
 tree sanity checks
void SetWeightFileDir( TString fileDir )
 set directory of weight file
Double_t Norm( TString var, Double_t x )
 renormalises variable with respect to its min and max
Double_t Norm( Int_t ivar, Double_t x )
 renormalises variable with respect to its min and max
void TestInit(TTree* theTestTree)
 initialisation of MVA testing 
void PrepareEvaluationTree( TTree* testTree )
 prepare tree branch with the method's discriminating variable
void Test( TTree *theTestTree )
 test the method - not much is done here... mainly furthor initialisation
Double_t GetEfficiency( TString theString, TTree *theTree )
 fill background efficiency (resp. rejection) versus signal efficiency plots
 returns signal efficiency at background efficiency indicated in theString
Double_t GetTrainingEfficiency( TString theString)
 fill background efficiency (resp. rejection) versus signal efficiency plots
 returns signal efficiency at background efficiency indicated in theString
Double_t GetSignificance( void )
 compute significance of mean difference
 significance = |<S> - <B>|/Sqrt(RMS_S2 + RMS_B2)
Double_t GetSeparation( void )
 compute "separation" defined as
 <s2> = (1/2) Int_-oo..+oo { (S(x)2 - B(x)2)/(S(x) + B(x)) dx }
Double_t GetOptimalSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value )
 plot significance, S/Sqrt(S^2 + B^2), curve for given number 
 of signal and background events; returns cut for optimal significance
 also returned via reference is the optimal significance 
Double_t GetmuTransform( TTree *theTree )
 computes Mu-transform
---------------------------------------------------------------------------------------
 Authors     : Francois Le Diberder and Muriel Pivk
 Reference   : Muriel Pivk,
               "Etude de la violation de CP dans la désintégration
                B0 -> h+ h- (h = pi, K) auprès du détecteur BaBar à SLAC",
               PhD thesis at Universite de Paris VI-VII, LPNHE (IN2P3/CNRS), Paris, 2003
               http://tel.ccsd.cnrs.fr/documents/archives0/00/00/29/91/index_fr.html

 Definitions : Bhat = PDFbackground(x)/(PDFbackground(x) + PDFsignal(x))
               mu   = mu(b) = Int_0B Bhat[b'] db'
---------------------------------------------------------------------------------------
void Statistics( TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t& meanS, Double_t& meanB, Double_t& rmsS, Double_t& rmsB, Double_t& xmin, Double_t& xmax, Bool_t norm )
 calculates rms,mean, xmin, xmax of the event variable
 this can be either done for the variables as they are or for
 normalised variables (in the range of 0-1) if "norm" is set to kTRUE
void WriteEvaluationHistosToFile( TDirectory* targetDir )
 writes all MVA evaluation histograms to file
Double_t IGetEffForRoot( Double_t theCut )
 interface for RootFinder
Double_t GetEffForRoot( Double_t theCut )
 returns efficiency as function of cut
void PrintOptions()
 prints out the options set in the options string and the defaults
void WriteOptionsToStream(ostream& o)
 write options to output stream (e.g. in writing the MVA weight files
void ReadOptionsFromStream(istream& istr)
 read option back from the weight file
void WriteMonitoringHistosToFile( void )
 write special monitoring histograms to file - not implemented for this method
void ReadWeightsFromStream( std::istream& i )
Bool_t IsSignalLike()
{ return GetMvaValue() > GetSignalReferenceCut() ? kTRUE : kFALSE; }
Double_t GetMvaValue()
 the new way to get the MVA value
const TString& GetMethodTitle( void )
{ return fMethodTitle; }
void SetMethodTitle( TString methodTitle )
{ fMethodTitle = methodTitle; }
TString GetWeightFileExtension( void )
{ return fFileExtension; }
void SetWeightFileExtension( TString fileExtension )
{ fFileExtension = fileExtension; }
void SetWeightFileType( EWeightFileType w )
{ fWeightFileType = w; }
EWeightFileType GetWeightFileType()
{ return fWeightFileType; }
TString GetWeightFileDir( void )
{ return fFileDir; }
const TString& GetInputVar( int i )
{ return Data().GetInternalVarName(i); }
const TString& GetInputExp( int i )
{ return Data().GetExpression(i); }
Bool_t HasTrainingTree()
{ return Data().GetTrainingTree() != 0; }
TTree* GetTrainingTree()
<< GetMethodName()
return Data()
TTree* GetTestTree()
Int_t GetNvar( void )
{ return fNvar; }
void SetNvar( Int_t n)
{ fNvar = n; }
Double_t GetXmin( Int_t ivar, Types::EPreprocessingMethod corr = Types::kNone )
 normalisation accessors
{ return fXminNorm[(Int_t) corr][ivar]; }
Double_t GetXmax( Int_t ivar, Types::EPreprocessingMethod corr = Types::kNone )
{ return fXmaxNorm[(Int_t) corr][ivar]; }
Double_t GetXmin( const TString& var, Types::EPreprocessingMethod corr = Types::kNone )
{ return GetXmin(Data().FindVar(var), corr); }
Double_t GetXmax( const TString& var, Types::EPreprocessingMethod corr = Types::kNone )
{ return GetXmax(Data().FindVar(var), corr); }
void SetXmin( Int_t ivar, Double_t x, Types::EPreprocessingMethod corr = Types::kNone )
{ fXminNorm[(Int_t) corr][ivar] = x; }
void SetXmax( Int_t ivar, Double_t x, Types::EPreprocessingMethod corr = Types::kNone )
{ fXmaxNorm[(Int_t) corr][ivar] = x; }
void SetXmin( const TString& var, Double_t x, Types::EPreprocessingMethod corr = Types::kNone )
{ SetXmin(Data().FindVar(var), x, corr); }
void SetXmax( const TString& var, Double_t x, Types::EPreprocessingMethod corr = Types::kNone )
{ SetXmax(Data().FindVar(var), x, corr); }
Types::EPreprocessingMethod GetPreprocessingMethod()
{ return fPreprocessingMethod; }
Bool_t Verbose( void )
{ return fVerbose; }
void SetVerbose( Bool_t v = kTRUE )
{ fVerbose = v; }
Bool_t ReadTrainingEvent( UInt_t ievt, Types::ESBType type = Types::kMaxSBType )
Bool_t ReadTestEvent( UInt_t ievt, Types::ESBType type = Types::kMaxSBType )
Double_t GetEventVal( Int_t ivar )
{ return Data().Event().GetVal(ivar); }
Double_t GetEventWeight()
{ return Data().Event().GetWeight(); }
MethodBase* GetThisBase( void )
 static pointer to this object
{ return fgThisBase; }
ECutOrientation GetCutOrientation()
{ return fCutOrientation; }
void ResetThisBase( void )
 reset required for RootFinder
{ fgThisBase = this; }
Double_t GetSignalReferenceCut()
 sets the minimum requirement on the MVA output to declare an event 
 signal-like
{ return fSignalReferenceCut; }
void SetSignalReferenceCut( Double_t cut )
{ fSignalReferenceCut = cut; }
Types::ESBType GetPreprocessingType()
{ return fPreprocessingType; }
void SetPreprocessingType( Types::ESBType t )
{ fPreprocessingType = t; }
TDirectory* LocalTDir()
{ return Data().LocalRootDir(); }
const TString& GetTestvarName()
 TestVar (the variable name used for the MVA)
{ return fTestvar; }
void SetTestvarName( void )
{ fTestvar = fTestvarPrefix + GetMethodTitle(); }
void SetTestvarName( TString v )
{ fTestvar = v; }
const TString& GetTestvarPrefix()
 MVA prefix (e.g., "TMVA_")
{ return fTestvarPrefix; }
void SetTestvarPrefix( TString prefix )
{ fTestvarPrefix = prefix; }
void EnableLooseOptions( Bool_t b = kTRUE )
{ fLooseOptionCheckingEnabled = b; }
void SetBaseDir( TDirectory* d )
{ fBaseDir = d; }
Bool_t LooseOptionCheckingEnabled()
{ return fLooseOptionCheckingEnabled; }
const TList& ListOfOptions()
{ return fListOfOptions; }

Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
Last update: root/tmva $Id: MethodBase.cxx,v 1.11 2006/11/20 15:35:28 brun Exp $
Copyright (c) 2005: *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.