library: libTMVA #include "MethodBase.h" |
virtual | ~MethodBase() |
void | TObject::AbstractMethod(const char* method) const |
virtual void | TObject::AppendPad(Option_t* option = "") |
virtual void | TObject::Browse(TBrowser* b) |
static TClass* | Class() |
virtual const char* | TObject::ClassName() const |
virtual void | TObject::Clear(Option_t* = "") |
virtual TObject* | TObject::Clone(const char* newname = "") const |
virtual Int_t | TObject::Compare(const TObject* obj) const |
virtual void | TObject::Copy(TObject& object) const |
virtual const TMVA::Ranking* | TMVA::IMethod::CreateRanking() |
TMVA::DataSet& | Data() const |
virtual void | DeclareOptions() |
virtual void | TObject::Delete(Option_t* option = "") |
virtual Int_t | TObject::DistancetoPrimitive(Int_t px, Int_t py) |
virtual void | TObject::Draw(Option_t* option = "") |
virtual void | TObject::DrawClass() const |
virtual TObject* | TObject::DrawClone(Option_t* option = "") const |
virtual void | TObject::Dump() const |
virtual void | TObject::Error(const char* method, const char* msgfmt) const |
virtual void | TObject::Execute(const char* method, const char* params, Int_t* error = 0) |
virtual void | TObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0) |
virtual void | TObject::ExecuteEvent(Int_t event, Int_t px, Int_t py) |
virtual void | TObject::Fatal(const char* method, const char* msgfmt) const |
virtual TObject* | TObject::FindObject(const char* name) const |
virtual TObject* | TObject::FindObject(const TObject* obj) const |
virtual Option_t* | TObject::GetDrawOption() const |
static Long_t | TObject::GetDtorOnly() |
Double_t | GetEffForRoot(Double_t) |
virtual Double_t | GetEfficiency(TString, TTree*) |
Double_t | GetEventVal(Int_t ivar) const |
Double_t | GetEventValNormalized(Int_t ivar) const |
Double_t | GetEventWeight() const |
virtual const char* | TObject::GetIconName() const |
const TString& | GetInputExp(int i) const |
const TString& | GetInputVar(int i) const |
virtual const TString& | GetJobName() const |
virtual const TString& | GetMethodName() const |
virtual const TString& | GetMethodTitle() const |
virtual const TMVA::Types::EMVA | GetMethodType() const |
virtual Double_t | GetmuTransform(TTree*) |
virtual Double_t | GetMvaValue() |
virtual const char* | GetName() const |
Int_t | GetNvar() const |
virtual char* | TObject::GetObjectInfo(Int_t px, Int_t py) const |
static Bool_t | TObject::GetObjectStat() |
virtual Double_t | GetOptimalSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const |
virtual Option_t* | TObject::GetOption() const |
TString | GetOptions() const |
virtual TMVA::Types::EPreprocessingMethod | GetPreprocessingMethod() const |
virtual Double_t | GetSeparation() |
virtual Double_t | GetSignificance() |
TTree* | GetTestTree() const |
static TMVA::MethodBase* | GetThisBase() |
virtual const char* | TObject::GetTitle() const |
virtual Double_t | GetTrainingEfficiency(TString) |
TTree* | GetTrainingTree() const |
virtual UInt_t | TObject::GetUniqueID() const |
virtual TString | GetWeightFileDir() const |
virtual TString | GetWeightFileExtension() const |
TString | GetWeightFileName() const |
TMVA::MethodBase::EWeightFileType | GetWeightFileType() const |
Double_t | GetXmax(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const |
Double_t | GetXmax(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const |
Double_t | GetXmin(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const |
Double_t | GetXmin(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const |
virtual Bool_t | TObject::HandleTimer(TTimer* timer) |
virtual ULong_t | TObject::Hash() const |
Bool_t | HasTrainingTree() const |
static Double_t | IGetEffForRoot(Double_t) |
virtual void | TObject::Info(const char* method, const char* msgfmt) const |
virtual Bool_t | TObject::InheritsFrom(const char* classname) const |
virtual Bool_t | TObject::InheritsFrom(const TClass* cl) const |
virtual void | TObject::Inspect() const |
void | TObject::InvertBit(UInt_t f) |
virtual TClass* | IsA() const |
virtual Bool_t | TObject::IsEqual(const TObject* obj) const |
virtual Bool_t | TObject::IsFolder() const |
virtual Bool_t | IsOK() const |
Bool_t | TObject::IsOnHeap() const |
virtual Bool_t | IsSignalLike() |
virtual Bool_t | TObject::IsSortable() const |
Bool_t | TObject::IsZombie() const |
virtual void | TObject::ls(Option_t* option = "") const |
void | TObject::MayNotUse(const char* method) const |
Double_t | Norm(Int_t ivar, Double_t x) const |
Double_t | Norm(TString var, Double_t x) const |
virtual Bool_t | TObject::Notify() |
static void | TObject::operator delete(void* ptr) |
static void | TObject::operator delete(void* ptr, void* vp) |
static void | TObject::operator delete[](void* ptr) |
static void | TObject::operator delete[](void* ptr, void* vp) |
void* | TObject::operator new(size_t sz) |
void* | TObject::operator new(size_t sz, void* vp) |
void* | TObject::operator new[](size_t sz) |
void* | TObject::operator new[](size_t sz, void* vp) |
TMVA::IMethod& | TMVA::IMethod::operator=(const TMVA::IMethod&) |
virtual void | TObject::Paint(Option_t* option = "") |
virtual void | TObject::Pop() |
virtual void | PrepareEvaluationTree(TTree* theTestTree) |
virtual void | TObject::Print(Option_t* option = "") const |
virtual void | ProcessOptions() |
virtual Int_t | TObject::Read(const char* name) |
virtual void | ReadStateFromFile() |
virtual void | ReadStateFromStream(istream& i) |
virtual Bool_t | ReadTestEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType) |
Bool_t | ReadTrainingEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType) |
virtual void | ReadWeightsFromStream(istream& i) |
virtual void | TObject::RecursiveRemove(TObject* obj) |
void | TObject::ResetBit(UInt_t f) |
virtual void | TObject::SaveAs(const char* filename = "", Option_t* option = "") const |
virtual void | TObject::SavePrimitive(ostream& out, Option_t* option = "") |
void | TObject::SetBit(UInt_t f) |
void | TObject::SetBit(UInt_t f, Bool_t set) |
virtual void | TObject::SetDrawOption(Option_t* option = "") |
static void | TObject::SetDtorOnly(void* obj) |
virtual void | SetJobName(TString jobName) |
void | SetMethodName(TString methodName) |
void | SetMethodTitle(TString methodTitle) |
void | SetMethodType(TMVA::Types::EMVA methodType) |
void | SetNvar(Int_t n) |
static void | TObject::SetObjectStat(Bool_t stat) |
void | SetPreprocessingMethod(TMVA::Types::EPreprocessingMethod m) |
virtual void | TObject::SetUniqueID(UInt_t uid) |
void | SetVerbose(Bool_t v = kTRUE) |
virtual void | SetWeightFileDir(TString fileDir) |
virtual void | SetWeightFileExtension(TString fileExtension) |
void | SetWeightFileName(TString) |
void | SetWeightFileType(TMVA::MethodBase::EWeightFileType w) |
void | SetXmax(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone) |
void | SetXmax(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone) |
void | SetXmin(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone) |
void | SetXmin(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone) |
virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
virtual void | Streamer(TBuffer& b) |
void | StreamerNVirtual(TBuffer& b) |
virtual void | TObject::SysError(const char* method, const char* msgfmt) const |
virtual void | Test(TTree* theTestTree = 0) |
Bool_t | TObject::TestBit(UInt_t f) const |
Int_t | TObject::TestBits(UInt_t f) const |
virtual void | TestInit(TTree* theTestTree = 0) |
virtual void | TMVA::IMethod::Train() |
void | TrainMethod() |
virtual void | TObject::UseCurrentStyle() |
Bool_t | Verbose() const |
virtual void | TObject::Warning(const char* method, const char* msgfmt) const |
virtual Int_t | TObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) |
virtual Int_t | TObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) const |
virtual void | WriteEvaluationHistosToFile(TDirectory* targetDir) |
virtual void | WriteMonitoringHistosToFile() const |
void | WriteStateToFile() const |
virtual void | WriteStateToStream(ostream& o) const |
virtual void | WriteWeightsToStream(ostream& o) const |
void | Init() |
Bool_t | LooseOptionCheckingEnabled() const |
void | SetBaseDir(TDirectory* d) |
enum EWeightFileType { | kROOT | |
kTEXT | ||
}; | ||
enum ECutOrientation { | kNegative | |
kPositive | ||
}; | ||
enum TObject::EStatusBits { | kCanDelete | |
kMustCleanup | ||
kObjInCanvas | ||
kIsReferenced | ||
kHasUUID | ||
kCannotPick | ||
kNoContextMenu | ||
kInvalidObject | ||
}; | ||
enum TObject::[unnamed] { | kIsOnHeap | |
kNotDeleted | ||
kZombie | ||
kBitMask | ||
kSingleKey | ||
kOverwrite | ||
kWriteDelete | ||
}; |
TMVA::Ranking* | fRanking | ranking |
vector<TString>* | fInputVars | vector of input variables used in MVA |
Bool_t | fIsOK | status of sanity checks |
TH1* | fHistS_plotbin | MVA plots used for graphics representation (signal) |
TH1* | fHistB_plotbin | MVA plots used for graphics representation (background) |
TH1* | fHistS_highbin | MVA plots used for efficiency calculations (signal) |
TH1* | fHistB_highbin | MVA plots used for efficiency calculations (background) |
TH1* | fEffS | efficiency plot (signal) |
TH1* | fEffB | efficiency plot (background) |
TH1* | fEffBvsS | background efficiency versus signal efficiency |
TH1* | fRejBvsS | background rejection (=1-eff.) versus signal efficiency |
TH1* | fHistBhatS | working histograms needed for mu-transform (signal) |
TH1* | fHistBhatB | working histograms needed for mu-transform (background) |
TH1* | fHistMuS | mu-transform (signal) |
TH1* | fHistMuB | mu-transform (background) |
TH1* | fTrainEffS | Training efficiency plot (signal) |
TH1* | fTrainEffB | Training efficiency plot (background) |
TH1* | fTrainEffBvsS | Training background efficiency versus signal efficiency |
TH1* | fTrainRejBvsS | Training background rejection (=1-eff.) versus signal efficiency |
Double_t | fX | |
Double_t | fMode | |
TGraph* | fGraphS | graphs used for splines for efficiency (signal) |
TGraph* | fGraphB | graphs used for splines for efficiency (background) |
TGraph* | fGrapheffBvsS | graphs used for splines for signal eff. versus background eff. |
TMVA::PDF* | fSplS | PDFs of MVA distribution (signal) |
TMVA::PDF* | fSplB | PDFs of MVA distribution (background) |
TSpline* | fSpleffBvsS | splines for signal eff. versus background eff. |
TGraph* | fGraphTrainS | graphs used for splines for training efficiency (signal) |
TGraph* | fGraphTrainB | graphs used for splines for training efficiency (background) |
TGraph* | fGraphTrainEffBvsS | graphs used for splines for training signal eff. versus background eff. |
TMVA::PDF* | fSplTrainS | PDFs of training MVA distribution (signal) |
TMVA::PDF* | fSplTrainB | PDFs of training MVA distribution (background) |
TSpline* | fSplTrainEffBvsS | splines for training signal eff. versus background eff. |
Int_t | fNbins | number of bins in representative histograms |
Int_t | fNbinsH | number of bins in evaluation histograms |
TMVA::MethodBase::ECutOrientation | fCutOrientation | +1 if Sig>Bkg, -1 otherwise |
TMVA::TSpline1* | fSplRefS | helper splines for RootFinder (signal) |
TMVA::TSpline1* | fSplRefB | helper splines for RootFinder (background) |
TMVA::TSpline1* | fSplTrainRefS | helper splines for RootFinder (signal) |
TMVA::TSpline1* | fSplTrainRefB | helper splines for RootFinder (background) |
TMVA::OptionBase* | fLastDeclaredOption | last declared option |
TList | fListOfOptions | option list |
TMVA::MsgLogger | fLogger | message logger |
Double_t | fSignalReferenceCut | minimum requirement on the MVA output to declare an event signal-like |
TMVA::Types::ESBType | fPreprocessingType | this is the event type (sig or bgd) assumed for preprocessing |
TMVA::DataSet& | fData | ! the data set |
Double_t* | fXminNorm[3] | ! minimum value for correlated/decorrelated/PCA variable |
Double_t* | fXmaxNorm[3] | ! maximum value for correlated/decorrelated/PCA variable |
TString | fJobName | name of job -> user defined, appears in weight files |
TString | fMethodName | name of the method (set in derived class) |
TMVA::Types::EMVA | fMethodType | type of method (set in derived class) |
TString | fMethodTitle | user-defined title for method (used for weight-file names) |
TString | fTestvar | variable used in evaluation, etc (mostly the MVA) |
TString | fTestvarPrefix | 'MVA_' prefix of MVA variable |
TString | fOptions | options string |
Int_t | fNvar | number of input variables |
TDirectory* | fBaseDir | base director, needed to know where to jump back from localDir |
TString | fFileExtension | extension used in weight files (default: ".weights") |
TString | fFileDir | unix sub-directory for weight files (default: "weights") |
TString | fWeightFile | weight file name |
TMVA::MethodBase::EWeightFileType | fWeightFileType | The type of weight file {kROOT,kTEXT} |
Double_t | fMeanS | mean (signal) |
Double_t | fMeanB | mean (background) |
Double_t | fRmsS | RMS (signal) |
Double_t | fRmsB | RMS (background) |
Double_t | fXmin | minimum (signal and background) |
Double_t | fXmax | maximum (signal and background) |
Bool_t | fUseDecorr | Use decorrelated Variables (kept for backward compatibility) |
TMVA::Types::EPreprocessingMethod | fPreprocessingMethod | Decorrelation, PCA, etc. |
TString | fPreprocessingString | labels preprocessing method |
TString | fPreprocessingTypeString | labels preprocessing type |
Bool_t | fVerbose | verbose flag |
Bool_t | fHelp | help flag |
Bool_t | fLooseOptionCheckingEnabled | checker for option string |
static TMVA::MethodBase* | fgThisBase | this pointer |
/* Virtual base Class for all MVA method MethodBase hosts several specific evaluation methods The kind of MVA that provides optimal performance in an analysis strongly depends on the particular application. The evaluation factory provides a number of numerical benchmark results to directly assess the performance of the MVA training on the independent test sample. These are:
_______________________________________________________________________
define the options (their key words) that can be set in the option string here the options valid for ALL MVA methods are declared. know options: Preprocess=None,Decorrelated,PCA to use decorrelated variables instead of the original ones PreprocessType=Signal,Background which decorrelation matrix to use in the method. Only the Likelihood Method can make proper use of independent transformations of signal and background V for Verbose output (!V) for non verbos H for Help
general method used in writing the header of the weight files where the used variables, preprocessing type etc. is specified
read the header from the weight files of the different MVA methods
return the normalized event variable (normalized to interval [0,1]
returns the ROOT directory where info/histograms etc of the corresponding MVA method are stored
prepare tree branch with the method's discriminating variable
test the method - not much is done here... mainly furthor initialisation
fill background efficiency (resp. rejection) versus signal efficiency plots returns signal efficiency at background efficiency indicated in theString
fill background efficiency (resp. rejection) versus signal efficiency plots returns signal efficiency at background efficiency indicated in theString
compute significance of mean difference significance = |<S> - <B>|/Sqrt(RMS_S2 + RMS_B2)
compute "separation" defined as
<s2> = (1/2) Int_-oo..+oo { (S(x)2 - B(x)2)/(S(x) + B(x)) dx }
plot significance, S/Sqrt(S^2 + B^2), curve for given number of signal and background events; returns cut for optimal significance also returned via reference is the optimal significance
computes Mu-transform --------------------------------------------------------------------------------------- Authors : Francois Le Diberder and Muriel Pivk Reference : Muriel Pivk, "Etude de la violation de CP dans la désintégration B0 -> h+ h- (h = pi, K) auprès du détecteur BaBar à SLAC", PhD thesis at Universite de Paris VI-VII, LPNHE (IN2P3/CNRS), Paris, 2003 http://tel.ccsd.cnrs.fr/documents/archives0/00/00/29/91/index_fr.html Definitions : Bhat = PDFbackground(x)/(PDFbackground(x) + PDFsignal(x)) mu = mu(b) = Int_0B Bhat[b'] db' ---------------------------------------------------------------------------------------
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE
writes all MVA evaluation histograms to file
write options to output stream (e.g. in writing the MVA weight files
write special monitoring histograms to file - not implemented for this method
normalisation accessors
sets the minimum requirement on the MVA output to declare an event signal-like
{ return fSignalReferenceCut; }