| ~BoostX() | |
| ROOT::Math::BoostX::Scalar | Beta() const | 
| ROOT::Math::BoostX::XYZVector | BetaVector() const | 
| ROOT::Math::BoostX | BoostX() | 
| ROOT::Math::BoostX | BoostX(ROOT::Math::BoostX::Scalar beta_x) | 
| ROOT::Math::BoostX | BoostX(const ROOT::Math::BoostX&) | 
| ROOT::Math::BoostX::Scalar | Gamma() const | 
| void | GetComponents(ROOT::Math::BoostX::Scalar& beta_x) const | 
| void | GetLorentzRotation(ROOT::Math::BoostX::Scalar* r) const | 
| ROOT::Math::BoostX | Inverse() const | 
| void | Invert() | 
| bool | operator!=(const ROOT::Math::BoostX& rhs) const | 
| ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> > | operator()(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const | 
| ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> > | operator*(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const | 
| ROOT::Math::BoostX& | operator=(const ROOT::Math::BoostX&) | 
| bool | operator==(const ROOT::Math::BoostX& rhs) const | 
| void | Rectify() | 
| void | SetBeta(ROOT::Math::BoostX::Scalar beta) | 
| void | SetComponents(ROOT::Math::BoostX::Scalar beta_x) | 

Assuming the representation of this is close to a true Lorentz Rotation, but may have drifted due to round-off error from many operations, this forms an "exact" orthosymplectic matrix for the Lorentz Rotation again.
apply boost to a LV
========== Constructors and Assignment ===================== Default constructor (identity transformation)
Set the given beta of the Boost
{ SetComponents(beta); }Overload operator * for operation on a vector