| ~CylindricalEta3D<double>() | |
| ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>() | 
| ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>(const ROOT::Math::CylindricalEta3D<double>& v) | 
| ROOT::Math::CylindricalEta3D<double> | CylindricalEta3D<double>(ROOT::Math::CylindricalEta3D<double>::Scalar rho, ROOT::Math::CylindricalEta3D<double>::Scalar eta, ROOT::Math::CylindricalEta3D<double>::Scalar phi) | 
| double | Eta() const | 
| void | GetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar* dest) const | 
| void | GetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar& rho, ROOT::Math::CylindricalEta3D<double>::Scalar& eta, ROOT::Math::CylindricalEta3D<double>::Scalar& phi) const | 
| double | Mag2() const | 
| void | Negate() | 
| bool | operator!=(const ROOT::Math::CylindricalEta3D<double>& rhs) const | 
| ROOT::Math::CylindricalEta3D<double>& | operator=(const ROOT::Math::CylindricalEta3D<double>& v) | 
| bool | operator==(const ROOT::Math::CylindricalEta3D<double>& rhs) const | 
| double | Perp2() const | 
| double | Phi() const | 
| double | R() const | 
| double | Rho() const | 
| void | Scale(double a) | 
| void | SetCoordinates(const ROOT::Math::CylindricalEta3D<double>::Scalar* src) | 
| void | SetCoordinates(ROOT::Math::CylindricalEta3D<double>::Scalar rho, ROOT::Math::CylindricalEta3D<double>::Scalar eta, ROOT::Math::CylindricalEta3D<double>::Scalar phi) | 
| void | SetEta(double eta) | 
| void | SetPhi(double phi) | 
| void | SetR(ROOT::Math::CylindricalEta3D<double>::Scalar r) | 
| void | SetRho(double rho) | 
| void | SetTheta(ROOT::Math::CylindricalEta3D<double>::Scalar theta) | 
| void | SetX(ROOT::Math::CylindricalEta3D<double>::Scalar x) | 
| void | SetXYZ(ROOT::Math::CylindricalEta3D<double>::Scalar x, ROOT::Math::CylindricalEta3D<double>::Scalar y, ROOT::Math::CylindricalEta3D<double>::Scalar z) | 
| void | SetY(ROOT::Math::CylindricalEta3D<double>::Scalar y) | 
| void | SetZ(ROOT::Math::CylindricalEta3D<double>::Scalar z) | 
| double | Theta() const | 
| double | X() const | 
| double | x() const | 
| double | Y() const | 
| double | y() const | 
| double | Z() const | 
| double | z() const | 

Set internal data based on an array of 3 Scalar numbers
get internal data into an array of 3 Scalar numbers
Set internal data based on 3 Scalar numbers
get internal data into 3 Scalar numbers
setters (only for data members) set the rho coordinate value keeping eta and phi constant
all values using cartesian coordina
scale by a scalar quantity a -- for cylindrical eta coords, as long as a >= 0, only rho changes!
Exact component-by-component equality Note: Peculiar representaions of the zero vector such as (0,1,0) will not test as equal to one another.
============= Compatibility section ================== The following make this coordinate system look enough like a CLHEP vector that an assignment member template can work with either
{ return X();}============= Specializations for improved speed ================== (none) ====== Set member functions for coordinates in other systems =======