| ~Random<ROOT::Math::GSLRngMT>() | |
| unsigned int | Binomial(unsigned int ntot, double prob) | 
| double | BreitWigner(double mean = 0., double gamma = 1) | 
| double | ChiSquare(double nu) | 
| void | Circle(double& x, double& y, double r = 1) | 
| unsigned int | EngineSize() const | 
| double | Exp(double tau) | 
| double | FDist(double nu1, double nu2) | 
| double | Gamma(double a, double b) | 
| double | Gaus(double mean = 0, double sigma = 1) | 
| double | GausBM(double mean = 0, double sigma = 1) | 
| double | GausR(double mean = 0, double sigma = 1) | 
| void | Gaussian2D(double sigmaX, double sigmaY, double rho, double& x, double& y) | 
| double | GaussianTail(double a, double sigma = 1) | 
| double | Landau(double mean = 0, double sigma = 1) | 
| double | LogNormal(double zeta, double sigma) | 
| vector<unsigned int> | Multinomial(unsigned int ntot, const vector<double>& p) | 
| ROOT::Math::Random<ROOT::Math::GSLRngMT>& | operator=(const ROOT::Math::Random<ROOT::Math::GSLRngMT>&) | 
| unsigned int | Poisson(double mu) | 
| ROOT::Math::Random<ROOT::Math::GSLRngMT> | Random<ROOT::Math::GSLRngMT>() | 
| ROOT::Math::Random<ROOT::Math::GSLRngMT> | Random<ROOT::Math::GSLRngMT>(unsigned int seed) | 
| ROOT::Math::Random<ROOT::Math::GSLRngMT> | Random<ROOT::Math::GSLRngMT>(const ROOT::Math::GSLRngMT& e) | 
| ROOT::Math::Random<ROOT::Math::GSLRngMT> | Random<ROOT::Math::GSLRngMT>(const ROOT::Math::Random<ROOT::Math::GSLRngMT>&) | 
| double | Rndm() | 
| void | RndmArray(int n, double* array) | 
| void | SetSeed(unsigned int seed) | 
| void | Sphere(double& x, double& y, double& z, double r = 1) | 
| double | tDist(double nu) | 
| string | Type() const | 
| double | Uniform(double x = 1.0) | 

Generate random numbers between ]0,1] 0 is excluded and 1 is included
Generate random numbers between ]0,1] 0 is excluded and 1 is included Function to preserve ROOT Trandom compatibility
Generate an array of random numbers between ]0,1] 0 is excluded and 1 is included Function to preserve ROOT Trandom compatibility
Bivariate Gaussian distribution with correlation
generate random numbers in a 3D sphere of radious 1
Multinomial distribution