ROOT logo
ROOT » MATH » MATHCORE » ROOT::Math

namespace ROOT::Math

Function Members (Methods)

public:
doubleairy_Ai(double x)
doubleairy_Ai_deriv(double x)
doubleairy_Bi(double x)
doubleairy_Bi_deriv(double x)
doubleairy_zero_Ai(unsigned int s)
doubleairy_zero_Ai_deriv(unsigned int s)
doubleairy_zero_Bi(unsigned int s)
doubleairy_zero_Bi_deriv(unsigned int s)
doubleassoc_laguerre(unsigned int, double m, double x)
doubleassoc_legendre(unsigned int, unsigned int, double x)
doublebeta(double x, double y)
doublebeta_cdf(double x, double a, double b)
doublebeta_cdf_c(double x, double a, double b)
doublebeta_pdf(double x, double a, double b)
doublebeta_quantile(double x, double a, double b)
doublebeta_quantile_c(double x, double a, double b)
doublebinomial_cdf(unsigned int k, double p, unsigned int n)
doublebinomial_cdf_c(unsigned int k, double p, unsigned int n)
doublebinomial_pdf(unsigned int k, double p, unsigned int n)
doublebreitwigner_cdf(double x, double gamma, double x0 = 0)
doublebreitwigner_cdf_c(double x, double gamma, double x0 = 0)
doublebreitwigner_pdf(double x, double gamma, double x0 = 0)
doublebreitwigner_quantile(double z, double gamma)
doublebreitwigner_quantile_c(double z, double gamma)
doublecauchy_cdf(double x, double b, double x0 = 0)
doublecauchy_cdf_c(double x, double b, double x0 = 0)
doublecauchy_pdf(double x, double b = 1, double x0 = 0)
doublecauchy_quantile(double z, double b)
doublecauchy_quantile_c(double z, double b)
doublechisquared_cdf(double x, double r, double x0 = 0)
doublechisquared_cdf_c(double x, double r, double x0 = 0)
doublechisquared_pdf(double x, double r, double x0 = 0)
doublechisquared_quantile(double z, double r)
doublechisquared_quantile_c(double z, double r)
doublecomp_ellint_1(double k)
doublecomp_ellint_2(double k)
doublecomp_ellint_3(double n, double k)
doubleconf_hyperg(double a, double b, double z)
doubleconf_hypergU(double a, double b, double z)
doublecosint(double x)
doublecyl_bessel_i(double nu, double x)
doublecyl_bessel_j(double nu, double x)
doublecyl_bessel_k(double nu, double x)
doublecyl_neumann(double nu, double x)
doubleellint_1(double k, double phi)
doubleellint_2(double k, double phi)
doubleellint_3(double n, double k, double phi)
doubleerf(double x)
doubleerfc(double x)
long doubleetaMax_impl()
doubleexpint(double x)
doubleexpm1(double x)
doubleexponential_cdf(double x, double lambda, double x0 = 0)
doubleexponential_cdf_c(double x, double lambda, double x0 = 0)
doubleexponential_pdf(double x, double lambda, double x0 = 0)
doubleexponential_quantile(double z, double lambda)
doubleexponential_quantile_c(double z, double lambda)
doublefdistribution_cdf(double x, double n, double m, double x0 = 0)
doublefdistribution_cdf_c(double x, double n, double m, double x0 = 0)
doublefdistribution_pdf(double x, double n, double m, double x0 = 0)
doublefdistribution_quantile(double z, double n, double m)
doublefdistribution_quantile_c(double z, double n, double m)
doublegamma_cdf(double x, double alpha, double theta, double x0 = 0)
doublegamma_cdf_c(double x, double alpha, double theta, double x0 = 0)
doublegamma_pdf(double x, double alpha, double theta, double x0 = 0)
doublegamma_quantile(double z, double alpha, double theta)
doublegamma_quantile_c(double z, double alpha, double theta)
doublegaussian_cdf(double x, double sigma = 1, double x0 = 0)
doublegaussian_cdf_c(double x, double sigma = 1, double x0 = 0)
doublegaussian_pdf(double x, double sigma = 1, double x0 = 0)
doublegaussian_quantile(double z, double sigma)
doublegaussian_quantile_c(double z, double sigma)
doublehyperg(double a, double b, double c, double x)
doubleinc_beta(double x, double a, double b)
doubleinc_gamma(double a, double x)
doubleinc_gamma_c(double a, double x)
doublelaguerre(unsigned int, double x)
doublelandau_cdf(double x, double xi = 1, double x0 = 0)
doublelandau_cdf_c(double x, double xi = 1, double x0 = 0)
doublelandau_pdf(double x, double xi = 1, double x0 = 0)
doublelandau_quantile(double z, double xi = 1)
doublelandau_quantile_c(double z, double xi = 1)
doublelandau_xm1(double x, double xi = 1, double x0 = 0)
doublelandau_xm2(double x, double xi = 1, double x0 = 0)
doublelegendre(unsigned int, double x)
doublelgamma(double x)
doublelog1p(double x)
doublelognormal_cdf(double x, double m, double s, double x0 = 0)
doublelognormal_cdf_c(double x, double m, double s, double x0 = 0)
doublelognormal_pdf(double x, double m, double s, double x0 = 0)
doublelognormal_quantile(double x, double m, double s)
doublelognormal_quantile_c(double x, double m, double s)
doublenormal_cdf(double x, double sigma = 1, double x0 = 0)
doublenormal_cdf_c(double x, double sigma = 1, double x0 = 0)
doublenormal_pdf(double x, double sigma = 1, double x0 = 0)
doublenormal_quantile(double z, double sigma)
doublenormal_quantile_c(double z, double sigma)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationY const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationZ const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationX const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationZ const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationX const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationY const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Rotation3D& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationY& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZ& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZYX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::AxisAngle& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::EulerAngles& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Quaternion& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::Rotation3D& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationY& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationZ& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationZYX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::EulerAngles& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::Quaternion& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::AxisAngle& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Translation3D& d)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& d, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Rotation3D& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationY& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationZ& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationZYX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::EulerAngles& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::AxisAngle& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Quaternion& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationX& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationY& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZ& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZYX& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::EulerAngles& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::AxisAngle& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Quaternion& r, const ROOT::Math::Transform3D& t)
ROOT::Math::XYZVectoroperator*(double a, ROOT::Math::XYZVector v)
ROOT::Math::XYZPointoperator*(double a, ROOT::Math::XYZPoint p)
ROOT::Math::XYZTVectoroperator*(double a, ROOT::Math::XYZTVector v)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ostream&operator<<(ostream& os, const ROOT::Math::Rotation3D& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationZYX& e)
ostream&operator<<(ostream& os, const ROOT::Math::RotationX& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationY& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationZ& r)
ostream&operator<<(ostream& os, const ROOT::Math::BoostX& b)
ostream&operator<<(ostream& os, const ROOT::Math::BoostY& b)
ostream&operator<<(ostream& os, const ROOT::Math::BoostZ& b)
ostream&operator<<(ostream& os, const ROOT::Math::Boost& b)
ostream&operator<<(ostream& os, const ROOT::Math::LorentzRotation& r)
ostream&operator<<(ostream& os, const ROOT::Math::EulerAngles& e)
ostream&operator<<(ostream& os, const ROOT::Math::AxisAngle& a)
ostream&operator<<(ostream& os, const ROOT::Math::Quaternion& q)
ostream&operator<<(ostream& os, const ROOT::Math::Translation3D& t)
ostream&operator<<(ostream& os, const ROOT::Math::Transform3D& t)
ostream&operator<<(ostream& os, const ROOT::Math::Plane3D& p)
doublePi()
doublepoisson_cdf(unsigned int n, double mu)
doublepoisson_cdf_c(unsigned int n, double mu)
doublepoisson_pdf(unsigned int n, double mu)
doubleriemann_zeta(double x)
doublesinint(double x)
doublesph_bessel(unsigned int, double x)
doublesph_legendre(unsigned int, unsigned int, double theta)
doublesph_neumann(unsigned int, double x)
doubletdistribution_cdf(double x, double r, double x0 = 0)
doubletdistribution_cdf_c(double x, double r, double x0 = 0)
doubletdistribution_pdf(double x, double r, double x0 = 0)
doubletdistribution_quantile(double z, double r)
doubletdistribution_quantile_c(double z, double r)
doubletgamma(double x)
voidThrow(ROOT::Math::GenVector_exception& e)
doubleuniform_cdf(double x, double a, double b, double x0 = 0)
doubleuniform_cdf_c(double x, double a, double b, double x0 = 0)
doubleuniform_pdf(double x, double a, double b, double x0 = 0)
doubleuniform_quantile(double z, double a, double b)
doubleuniform_quantile_c(double z, double a, double b)
doublevavilov_accurate_cdf(double x, double kappa, double beta2)
doublevavilov_accurate_cdf_c(double x, double kappa, double beta2)
doublevavilov_accurate_pdf(double x, double kappa, double beta2)
doublevavilov_accurate_quantile(double z, double kappa, double beta2)
doublevavilov_accurate_quantile_c(double z, double kappa, double beta2)
doublevavilov_fast_cdf(double x, double kappa, double beta2)
doublevavilov_fast_cdf_c(double x, double kappa, double beta2)
doublevavilov_fast_pdf(double x, double kappa, double beta2)
doublevavilov_fast_quantile(double z, double kappa, double beta2)
doublevavilov_fast_quantile_c(double z, double kappa, double beta2)

Data Members

Class Charts

Function documentation

double beta_quantile(double x, double a, double b)
 @defgroup QuantFunc Quantile Functions
   *  @ingroup StatFunc
   *
   *  Inverse functions of the cumulative distribution functions
   *  and the inverse of the complement of the cumulative distribution functions
   *  for various distributions.
   *  The functions with the extension <em>_quantile</em> calculate the
   *  inverse of the <em>_cdf</em> function, the
   *  lower tail integral of the probability density function
   *  \f$D^{-1}(z)\f$ where
   *
   *  \f[ D(x) = \int_{-\infty}^{x} p(x') dx' \f]
   *
   *  while those with the <em>_quantile_c</em> extension calculate the
   *  inverse of the <em>_cdf_c</em> functions, the upper tail integral of the probability
   *  density function \f$D^{-1}(z) \f$ where
   *
   *  \f[ D(x) = \int_{x}^{+\infty} p(x') dx' \f]
   *
   *  These functions are defined in the header file <em>Math/ProbFunc.h<em> or in the global one
   *  including all statistical dunctions <em>Math/DistFunc.h<em>
   *
   *
   * <strong>NOTE:</strong> In the old releases (< 5.14) the <em>_quantile</em> functions were called
   * <em>_quant_inv</em> and the <em>_quantile_c</em> functions were called
   * <em>_prob_inv</em>.
   * These names are currently kept for backward compatibility, but
   * their usage is deprecated.
   *

 @name Quantile Functions from MathCore
   * The implementation is provided in MathCore and for the majority of the function comes from
   * <A HREF="http://www.netlib.org/cephes">Cephes</A>.


@{


     Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
     function of the upper tail of the beta distribution
     (#beta_cdf_c).
     It is implemented using the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.


     @ingroup QuantFunc


double beta_quantile_c(double x, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the beta distribution
      (#beta_cdf).
      It is implemented using
      the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double cauchy_quantile_c(double z, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the Cauchy distribution (#cauchy_cdf_c)
      which is also called Lorentzian distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double cauchy_quantile(double z, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Cauchy distribution (#cauchy_cdf)
      which is also called Breit-Wigner or Lorentzian distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC294">GSL</A>.

      @ingroup QuantFunc


double breitwigner_quantile_c(double z, double gamma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the Breit-Wigner distribution (#breitwigner_cdf_c)
      which is similar to the Cauchy distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of
      #cauchy_quantile_c.

      @ingroup QuantFunc


double breitwigner_quantile(double z, double gamma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Breit_Wigner distribution (#breitwigner_cdf)
      which is similar to the Cauchy distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of
      #cauchy_quantile.


      @ingroup QuantFunc


double chisquared_quantile_c(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the \f$\chi^2\f$ distribution
      with \f$r\f$ degrees of freedom (#chisquared_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>. It is implemented using the inverse of the incomplete complement gamma function, using
      the function igami from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double chisquared_quantile(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the \f$\chi^2\f$ distribution
      with \f$r\f$ degrees of freedom (#chisquared_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>.
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z.
      It is reccomended to use the MathMore function (ROOT::MathMore::chisquared_quantile )implemented using GSL

      @ingroup QuantFunc


double exponential_quantile_c(double z, double lambda)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the exponential distribution
      (#exponential_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double exponential_quantile(double z, double lambda)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the exponential distribution
      (#exponential_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double fdistribution_quantile(double z, double n, double m)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the f distribution
      (#fdistribution_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function,
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double fdistribution_quantile_c(double z, double n, double m)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the f distribution
      (#fdistribution_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function,
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc

double gamma_quantile_c(double z, double alpha, double theta)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the gamma distribution
      (#gamma_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC300">GSL</A>.
      It is implemented using the function igami taken
      from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double gamma_quantile(double z, double alpha, double theta)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the gamma distribution
      (#gamma_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>.
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z.
      For this special cases it is reccomended to use the MathMore function ROOT::MathMore::gamma_quantile
      implemented using GSL


      @ingroup QuantFunc


double gaussian_quantile_c(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the normal (Gaussian) distribution
      (#gaussian_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile_c which will
      call the same implementation.

      @ingroup QuantFunc


double gaussian_quantile(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the normal (Gaussian) distribution
      (#gaussian_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double lognormal_quantile_c(double x, double m, double s)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the lognormal distribution
      (#lognormal_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.

      @ingroup QuantFunc


double lognormal_quantile(double x, double m, double s)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the lognormal distribution
      (#lognormal_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.

      @ingroup QuantFunc


double normal_quantile_c(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the normal (Gaussian) distribution
      (#normal_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile_c which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double normal_quantile(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the normal (Gaussian) distribution
      (#normal_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.


      @ingroup QuantFunc


double tdistribution_quantile_c(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of Student's t-distribution
      (#tdistribution_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.

      @ingroup QuantFunc


double tdistribution_quantile(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of Student's t-distribution
      (#tdistribution_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.

      @ingroup QuantFunc


double uniform_quantile_c(double z, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the uniform (flat) distribution
      (#uniform_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double uniform_quantile(double z, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the uniform (flat) distribution
      (#uniform_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double landau_quantile(double z, double xi = 1)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Landau distribution
      (#landau_cdf).

   For detailed description see
   K.S. K&ouml;lbig and B. Schorr, A program package for the Landau distribution,
   <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A>
   <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>.
   The same algorithms as in
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html">
   CERNLIB</A> (RANLAN) is used.

   @param z The argument \f$z\f$
   @param xi The width parameter \f$\xi\f$

      @ingroup QuantFunc


double landau_quantile_c(double z, double xi = 1)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the landau distribution
      (#landau_cdf_c).
      Implemented using #landau_quantile

   @param z The argument \f$z\f$
   @param xi The width parameter \f$\xi\f$

      @ingroup QuantFunc