46 if ( (
fMinimType.find(
"Fumili") == std::string::npos) )
56 for (
unsigned int i = 0; i <
npar; ++i ) {
67 std::cout <<
"create fit result from config - nfree " <<
fNFree << std::endl;
83 fVal = min->MinValue();
94 const unsigned int npar = min->NDim();
95 if (
npar == 0)
return;
98 fParams = std::vector<double>(min->X(), min->X() +
npar);
102 for (
unsigned int i = 0; i <
npar; ++i ) {
121 for (
unsigned int i = 0; i <
npar; ++i ) {
128 unsigned int nfree = 0;
132 for (
unsigned int ipar = 0; ipar <
npar; ++ipar) {
143 MATH_ERROR_MSG(
"FitResult",
"FitConfiguration and Minimizer result are not consistent");
144 std::cout <<
"Number of free parameters from FitConfig = " <<
nfree << std::endl;
145 std::cout <<
"Number of free parameters from Minimizer = " <<
fNFree << std::endl;
169 if (min->Errors() !=
nullptr) {
171 fErrors = std::vector<double>(min->Errors(), min->Errors() +
npar ) ;
176 for (
unsigned int i = 0; i <
npar; ++i)
177 for (
unsigned int j = 0;
j <= i; ++
j)
198 if (min->NDim() !=
npar ) {
202 if (min->X() ==
nullptr ) {
206 if (
fNFree != min->NFree() ) {
213 fVal = min->MinValue();
219 if ( min->NCalls() > 0)
fNCalls = min->NCalls();
223 std::copy(min->X(), min->X() +
npar,
fParams.begin());
229 if (min->Errors() !=
nullptr) {
233 std::copy(min->Errors(), min->Errors() +
npar,
fErrors.begin() ) ;
241 for (
unsigned int i = 0; i <
npar; ++i) {
242 for (
unsigned int j = 0;
j <= i; ++
j)
259 for (
unsigned int i = 0; i <
fErrors.size() ; ++i)
261 for (
unsigned int i = 0; i <
fCovMatrix.size() ; ++i)
310 for (
unsigned int i = 0; i <
npar; ++i) {
329 constexpr double inf = std::numeric_limits<double>::infinity();
349 os <<
"<Empty FitResult>\n";
352 os <<
"****************************************\n";
355 os <<
" Invalid FitResult";
356 os <<
" (status = " <<
fStatus <<
" )";
359 os <<
" FitResult before fitting";
361 os <<
"\n****************************************\n";
365 os <<
"Minimizer is " <<
fMinimType << std::endl;
366 const unsigned int nw = 25;
367 const unsigned int nn = 12;
368 const std::ios_base::fmtflags
prFmt = os.setf(std::ios::left,std::ios::adjustfield);
371 os << std::left << std::setw(
nw) <<
"MinFCN" <<
" = " << std::right << std::setw(
nn) <<
fVal << std::endl;
373 os << std::left << std::setw(
nw) <<
"Chi2" <<
" = " << std::right << std::setw(
nn) <<
fChi2 << std::endl;
374 os << std::left << std::setw(
nw) <<
"NDf" <<
" = " << std::right << std::setw(
nn) <<
fNdf << std::endl;
375 if (
fMinimType.find(
"Linear") == std::string::npos) {
376 if (
fEdm >=0) os << std::left << std::setw(
nw) <<
"Edm" <<
" = " << std::right << std::setw(
nn) <<
fEdm << std::endl;
377 os << std::left << std::setw(
nw) <<
"NCalls" <<
" = " << std::right << std::setw(
nn) <<
fNCalls << std::endl;
379 for (
unsigned int i = 0; i <
npar; ++i) {
381 os <<
" = " << std::right << std::setw(
nn) <<
fParams[i];
383 os << std::setw(9) <<
" " << std::setw(
nn) <<
" " <<
" \t (fixed)";
386 os <<
" +/- " << std::left << std::setw(
nn) <<
fErrors[i] << std::right;
391 os <<
" \t (limited)";
397 if (
prFmt != os.flags() ) os.setf(
prFmt, std::ios::adjustfield);
407 os <<
"\nCovariance Matrix:\n\n";
416 const std::ios_base::fmtflags
prevFmt = os.flags();
418 os << std::setw(
parw) <<
" " <<
"\t";
419 for (
unsigned int i = 0; i <
npar; ++i) {
425 for (
unsigned int i = 0; i <
npar; ++i) {
428 for (
unsigned int j = 0;
j <
npar; ++
j) {
437 os <<
"\nCorrelation Matrix:\n\n";
438 os << std::setw(
parw) <<
" " <<
"\t";
439 for (
unsigned int i = 0; i <
npar; ++i) {
445 for (
unsigned int i = 0; i <
npar; ++i) {
448 for (
unsigned int j = 0;
j <
npar; ++
j) {
457 os.setf(
prevFmt, std::ios::adjustfield);
470 MATH_ERROR_MSG(
"FitResult::GetConfidenceIntervals",
"Cannot compute Confidence Intervals without fit model function");
486 unsigned int ndim =
fFitFunc->NDim();
489 std::vector<double>
xpoint(ndim);
490 std::vector<double> grad(
npar);
504 for (
unsigned int ipar = 0; ipar <
npar; ++ipar) {
511 d.SetStepSize( std::max(
fErrors[ipar]*1.E-5, 1.E-15) );
513 d.SetStepSize( std::min(std::max(
fParams[ipar]*1.E-5, 1.E-15), 0.0001 ) );
523 for (
unsigned int ipar = 0; ipar <
npar; ++ipar) {
530 for (
unsigned int ipar = 0; ipar <
npar; ++ipar) {
531 r2 += grad[ipar] *
vsum[ipar];
533 double r = std::sqrt(
r2);
542 unsigned int ndim =
data.NDim();
543 unsigned int np =
data.NPoints();
544 std::vector<double>
xdata( ndim *
np );
545 for (
unsigned int i = 0; i <
np ; ++i) {
546 const double *
x =
data.Coords(i);
548 std::copy(
x,
x+ndim,
itr);
558 std::vector<double>
result;
564 MATH_ERROR_MSG(
"FitResult::GetConfidenceIntervals",
"Cannot compute Confidence Intervals without the fit bin data");
583 MATH_ERROR_MSG(
"FitResult::Scan",
"Minimizer is not available - cannot Scan");
604 MATH_ERROR_MSG(
"FitResult::Contour",
"Minimizer is not available - cannot produce Contour");
#define MATH_ERROR_MSG(loc, str)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
std::vector< double > fGlobalCC
global Correlation coefficient
unsigned int fNFree
number of fit free parameters (total parameters are in size of parameter vector)
bool Update(const std::shared_ptr< ROOT::Math::Minimizer > &min, const ROOT::Fit::FitConfig &fconfig, bool isValid, unsigned int ncalls=0)
Update the fit result with a new minimization status To be run only if same fit is performed with sam...
const BinData * FittedBinData() const
return BinData used in the fit (return a nullptr in case a different fit is done or the data are not ...
FitResult()=default
Default constructor for an empty (non valid) fit result.
void FillResult(const std::shared_ptr< ROOT::Math::Minimizer > &min, const FitConfig &fconfig, const std::shared_ptr< IModelFunction > &f, bool isValid, unsigned int sizeOfData=0, int fitType=1, const ROOT::Math::IMultiGenFunction *chi2func=nullptr, unsigned int ncalls=0)
Fill the fit result from a Minimizer instance after fitting Run also Minos if requested from the conf...
double UpperError(unsigned int i) const
upper Minos error. If Minos has not run for parameter i return the parabolic error
double fVal
minimum function value
double fEdm
expected distance from minimum
std::vector< double > fErrors
errors
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
! minimizer object used for fitting
bool fValid
flag for indicating valid fit
bool IsParameterFixed(unsigned int ipar) const
query if a parameter is fixed
unsigned int fNdf
number of degree of freedom
double Error(unsigned int i) const
parameter error by index
double CovMatrix(unsigned int i, unsigned int j) const
retrieve covariance matrix element
void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double *x, double *ci, double cl=0.95, bool norm=false) const
get confidence intervals for an array of n points x.
int fCovStatus
covariance matrix status code
std::vector< unsigned int > fBoundParams
if parameters are limited
bool Scan(unsigned int ipar, unsigned int &npoints, double *pntsx, double *pntsy, double xmin=0, double xmax=0)
scan likelihood value of parameter and fill the given graph.
std::shared_ptr< FitData > fFitData
! data set used in the fit
std::string GetParameterName(unsigned int ipar) const
get name of parameter (deprecated)
bool ParameterBounds(unsigned int ipar, double &lower, double &upper) const
retrieve parameter bounds - return false if parameter is not bound
std::vector< double > fParams
parameter values. Size is total number of parameters
std::vector< double > fCovMatrix
covariance matrix (size is npar*(npar+1)/2) where npar is total parameters
void SetMinosError(unsigned int i, double elow, double eup)
set the Minos errors for parameter i (called by the Fitter class when running Minos)
void Print(std::ostream &os, bool covmat=false) const
print the result and optionally covariance matrix and correlations
double LowerError(unsigned int i) const
lower Minos error. If Minos has not run for parameter i return the parabolic error
std::vector< bool > fFixedParams
if parameters are fixed
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
unsigned int fNCalls
number of function calls
bool Contour(unsigned int ipar, unsigned int jpar, unsigned int &npoints, double *pntsx, double *pntsy, double confLevel=0.683)
create contour of two parameters around the minimum pass as option confidence level: default is a val...
bool HasMinosError(unsigned int i) const
query if parameter i has the Minos error
std::vector< std::pair< double, double > > fParamBounds
parameter bounds
int fStatus
minimizer status code
double fChi2
fit chi2 value (different than fval in case of chi2 fits)
std::shared_ptr< IModelFunction > fFitFunc
! model function resulting from the fit.
std::string fMinimType
string indicating type of minimizer
double Correlation(unsigned int i, unsigned int j) const
retrieve correlation elements
int Index(const std::string &name) const
get index for parameter name (return -1 if not found)
double Prob() const
p value of the fit (chi2 probability)
std::string ParName(unsigned int i) const
name of the parameter
void NormalizeErrors()
normalize errors using chi2/ndf for chi2 fits
bool fNormalized
flag for indicating is errors are normalized
bool IsParameterBound(unsigned int ipar) const
query if a parameter is bound
std::vector< std::string > fParNames
parameter names (only with FCN only fits, when fFitFunc=0)
std::map< unsigned int, std::pair< double, double > > fMinosErrors
map contains the two Minos errors
void SetChi2AndNdf(double chi2, unsigned int npoints)
Set the chi2 and the ndf This function should be called when using an external FCN for fitting and on...
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
bool IsFixed() const
check if is fixed
bool HasUpperLimit() const
check if parameter has upper limit
double LowerLimit() const
return lower limit value
const std::string & Name() const
return name
bool HasLowerLimit() const
check if parameter has lower limit
double Value() const
return parameter value
double StepSize() const
return step size
double UpperLimit() const
return upper limit value
bool IsBound() const
check if is bound
Documentation for the abstract class IBaseFunctionMultiDim.
OneDimParamFunctionAdapter class to wrap a multi-dim parametric function in one dimensional one.
User class for calculating the derivatives of a function.
const_iterator begin() const
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
Namespace for the fitting classes.
const int gInitialResultStatus
std::string ToString(const T &val)
Utility function for conversion to strings.
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...