Logo ROOT  
Reference Guide
PtEtaPhiE4D.h
Go to the documentation of this file.
1
2// @(#)root/mathcore:$Id$
3// Authors: W. Brown, M. Fischler, L. Moneta 2005
4
5/**********************************************************************
6* *
7* Copyright (c) 2005 , LCG ROOT FNAL MathLib Team *
8* *
9* *
10**********************************************************************/
11
12// Header file for class PtEtaPhiE4D
13//
14// Created by: fischler at Wed Jul 20 2005
15// based on CylindricalEta4D by moneta
16//
17// Last update: $Id$
18//
19#ifndef ROOT_Math_GenVector_PtEtaPhiE4D
20#define ROOT_Math_GenVector_PtEtaPhiE4D 1
21
22#include "Math/Math.h"
23
25
27
28
29
30//#define TRACE_CE
31#ifdef TRACE_CE
32#include <iostream>
33#endif
34
35#include <cmath>
36
37namespace ROOT {
38
39namespace Math {
40
41//__________________________________________________________________________________________
42/**
43 Class describing a 4D cylindrical coordinate system
44 using Pt , Phi, Eta and E (or rho, phi, eta , T)
45 The metric used is (-,-,-,+).
46 Phi is restricted to be in the range [-PI,PI)
47
48 @ingroup GenVector
49
50 @sa Overview of the @ref GenVector "physics vector library"
51*/
52
53template <class ScalarType>
55
56public :
57
58 typedef ScalarType Scalar;
59
60 // --------- Constructors ---------------
61
62 /**
63 Default constructor gives zero 4-vector
64 */
65 PtEtaPhiE4D() : fPt(0), fEta(0), fPhi(0), fE(0) { }
66
67 /**
68 Constructor from pt, eta, phi, e values
69 */
71 fPt(pt), fEta(eta), fPhi(phi), fE(e) { Restrict(); }
72
73 /**
74 Generic constructor from any 4D coordinate system implementing
75 Pt(), Eta(), Phi() and E()
76 */
77 template <class CoordSystem >
78 explicit PtEtaPhiE4D(const CoordSystem & c) :
79 fPt(c.Pt()), fEta(c.Eta()), fPhi(c.Phi()), fE(c.E()) { }
80
81 // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower
82 // so we decided to re-implement them ( there is no no need to have them with g++4)
83
84 /**
85 copy constructor
86 */
88 fPt(v.fPt), fEta(v.fEta), fPhi(v.fPhi), fE(v.fE) { }
89
90 /**
91 assignment operator
92 */
94 fPt = v.fPt;
95 fEta = v.fEta;
96 fPhi = v.fPhi;
97 fE = v.fE;
98 return *this;
99 }
100
101
102 /**
103 Set internal data based on an array of 4 Scalar numbers
104 */
105 void SetCoordinates( const Scalar src[] )
106 { fPt=src[0]; fEta=src[1]; fPhi=src[2]; fE=src[3]; Restrict(); }
107
108 /**
109 get internal data into an array of 4 Scalar numbers
110 */
111 void GetCoordinates( Scalar dest[] ) const
112 { dest[0] = fPt; dest[1] = fEta; dest[2] = fPhi; dest[3] = fE; }
113
114 /**
115 Set internal data based on 4 Scalar numbers
116 */
118 { fPt=pt; fEta = eta; fPhi = phi; fE = e; Restrict(); }
119
120 /**
121 get internal data into 4 Scalar numbers
122 */
123 void
124 GetCoordinates(Scalar& pt, Scalar & eta, Scalar & phi, Scalar& e) const
125 { pt=fPt; eta=fEta; phi = fPhi; e = fE; }
126
127 // --------- Coordinates and Coordinate-like Scalar properties -------------
128
129 // 4-D Cylindrical eta coordinate accessors
130
131 Scalar Pt() const { return fPt; }
132 Scalar Eta() const { return fEta; }
133 Scalar Phi() const { return fPhi; }
134 Scalar E() const { return fE; }
135
136 Scalar Perp()const { return Pt(); }
137 Scalar Rho() const { return Pt(); }
138 Scalar T() const { return E(); }
139
140 // other coordinate representation
141
142 Scalar Px() const { using std::cos; return fPt * cos(fPhi); }
143 Scalar X () const { return Px(); }
144 Scalar Py() const { using std::sin; return fPt * sin(fPhi); }
145 Scalar Y () const { return Py(); }
146 Scalar Pz() const {
147 using std:: sinh;
148 return fPt > 0 ? fPt * sinh(fEta) : fEta == 0 ? 0 : fEta > 0 ? fEta - etaMax<Scalar>() : fEta + etaMax<Scalar>();
149 }
150 Scalar Z () const { return Pz(); }
151
152 /**
153 magnitude of momentum
154 */
155 Scalar P() const {
156 using std::cosh;
157 return fPt > 0 ? fPt * cosh(fEta)
158 : fEta > etaMax<Scalar>() ? fEta - etaMax<Scalar>()
159 : fEta < -etaMax<Scalar>() ? -fEta - etaMax<Scalar>() : 0;
160 }
161 Scalar R() const { return P(); }
162
163 /**
164 squared magnitude of spatial components (momentum squared)
165 */
166 Scalar P2() const
167 {
168 const Scalar p = P();
169 return p * p;
170 }
171
172 /**
173 vector magnitude squared (or mass squared)
174 */
175 Scalar M2() const
176 {
177 const Scalar p = P();
178 return fE * fE - p * p;
179 }
180 Scalar Mag2() const { return M2(); }
181
182 /**
183 invariant mass
184 */
185 Scalar M() const {
186 const Scalar mm = M2();
187 if (mm >= 0) {
188 using std::sqrt;
189 return sqrt(mm);
190 } else {
191 GenVector::Throw ("PtEtaPhiE4D::M() - Tachyonic:\n"
192 " Pt and Eta give P such that P^2 > E^2, so the mass would be imaginary");
193 using std::sqrt;
194 return -sqrt(-mm);
195 }
196 }
197 Scalar Mag() const { return M(); }
198
199 /**
200 transverse spatial component squared
201 */
202 Scalar Pt2() const { return fPt*fPt;}
203 Scalar Perp2() const { return Pt2(); }
204
205 /**
206 transverse mass squared
207 */
208 Scalar Mt2() const { Scalar pz = Pz(); return fE*fE - pz*pz; }
209
210 /**
211 transverse mass
212 */
213 Scalar Mt() const {
214 const Scalar mm = Mt2();
215 if (mm >= 0) {
216 using std::sqrt;
217 return sqrt(mm);
218 } else {
219 GenVector::Throw ("PtEtaPhiE4D::Mt() - Tachyonic:\n"
220 " Pt and Eta give Pz such that Pz^2 > E^2, so the mass would be imaginary");
221 using std::sqrt;
222 return -sqrt(-mm);
223 }
224 }
225
226 /**
227 transverse energy
228 */
229 /**
230 transverse energy
231 */
232 Scalar Et() const {
233 using std::cosh;
234 return fE / cosh(fEta); // faster using eta
235 }
236
237 /**
238 transverse energy squared
239 */
240 Scalar Et2() const
241 {
242 const Scalar et = Et();
243 return et * et;
244 }
245
246private:
247 inline static Scalar pi() { return M_PI; }
248 inline void Restrict() {
249 using std::floor;
250 if (fPhi <= -pi() || fPhi > pi()) fPhi = fPhi - floor(fPhi / (2 * pi()) + .5) * 2 * pi();
251 }
252public:
253
254 /**
255 polar angle
256 */
257 Scalar Theta() const { using std::atan; return (fPt > 0 ? Scalar(2) * atan(exp(-fEta)) : fEta >= 0 ? 0 : pi()); }
258
259 // --------- Set Coordinates of this system ---------------
260
261 /**
262 set Pt value
263 */
264 void SetPt( Scalar pt) {
265 fPt = pt;
266 }
267 /**
268 set eta value
269 */
270 void SetEta( Scalar eta) {
271 fEta = eta;
272 }
273 /**
274 set phi value
275 */
276 void SetPhi( Scalar phi) {
277 fPhi = phi;
278 Restrict();
279 }
280 /**
281 set E value
282 */
283 void SetE( Scalar e) {
284 fE = e;
285 }
286
287 /**
288 set values using cartesian coordinate system
289 */
290 void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e);
291
292
293 // ------ Manipulations -------------
294
295 /**
296 negate the 4-vector
297 */
298 void Negate( ) {
299 fPhi = ( fPhi > 0 ? fPhi - pi() : fPhi + pi() );
300 fEta = - fEta;
301 fE = - fE;
302 }
303
304 /**
305 Scale coordinate values by a scalar quantity a
306 */
307 void Scale( Scalar a) {
308 if (a < 0) {
309 Negate(); a = -a;
310 }
311 fPt *= a;
312 fE *= a;
313 }
314
315 /**
316 Assignment from a generic coordinate system implementing
317 Pt(), Eta(), Phi() and E()
318 */
319 template <class CoordSystem >
320 PtEtaPhiE4D & operator = (const CoordSystem & c) {
321 fPt = c.Pt();
322 fEta = c.Eta();
323 fPhi = c.Phi();
324 fE = c.E();
325 return *this;
326 }
327
328 /**
329 Exact equality
330 */
331 bool operator == (const PtEtaPhiE4D & rhs) const {
332 return fPt == rhs.fPt && fEta == rhs.fEta
333 && fPhi == rhs.fPhi && fE == rhs.fE;
334 }
335 bool operator != (const PtEtaPhiE4D & rhs) const {return !(operator==(rhs));}
336
337 // ============= Compatibility section ==================
338
339 // The following make this coordinate system look enough like a CLHEP
340 // vector that an assignment member template can work with either
341 Scalar x() const { return X(); }
342 Scalar y() const { return Y(); }
343 Scalar z() const { return Z(); }
344 Scalar t() const { return E(); }
345
346
347
348#if defined(__MAKECINT__) || defined(G__DICTIONARY)
349
350 // ====== Set member functions for coordinates in other systems =======
351
352 void SetPx(Scalar px);
353
354 void SetPy(Scalar py);
355
356 void SetPz(Scalar pz);
357
358 void SetM(Scalar m);
359
360
361#endif
362
363private:
364
365 ScalarType fPt;
366 ScalarType fEta;
367 ScalarType fPhi;
368 ScalarType fE;
369
370};
371
372
373} // end namespace Math
374} // end namespace ROOT
375
376
377
378// move implementations here to avoid circle dependencies
380#if defined(__MAKECINT__) || defined(G__DICTIONARY)
382#endif
383
384namespace ROOT {
385
386namespace Math {
387
388template <class ScalarType>
390 *this = PxPyPzE4D<Scalar> (px, py, pz, e);
391}
392
393
394#if defined(__MAKECINT__) || defined(G__DICTIONARY)
395
396 // ====== Set member functions for coordinates in other systems =======
397
398template <class ScalarType>
400 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
401 throw e;
402 PxPyPzE4D<Scalar> v(*this); v.SetPx(px); *this = PtEtaPhiE4D<Scalar>(v);
403}
404template <class ScalarType>
405inline void PtEtaPhiE4D<ScalarType>::SetPy(Scalar py) {
406 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
407 throw e;
408 PxPyPzE4D<Scalar> v(*this); v.SetPy(py); *this = PtEtaPhiE4D<Scalar>(v);
409}
410template <class ScalarType>
411inline void PtEtaPhiE4D<ScalarType>::SetPz(Scalar pz) {
412 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
413 throw e;
414 PxPyPzE4D<Scalar> v(*this); v.SetPz(pz); *this = PtEtaPhiE4D<Scalar>(v);
415}
416template <class ScalarType>
417inline void PtEtaPhiE4D<ScalarType>::SetM(Scalar m) {
418 GenVector_exception e("PtEtaPhiE4D::SetM() is not supposed to be called");
419 throw e;
420 PtEtaPhiM4D<Scalar> v(*this); v.SetM(m);
421 *this = PtEtaPhiE4D<Scalar>(v);
422}
423
424#endif // endif __MAKE__CINT || G__DICTIONARY
425
426} // end namespace Math
427
428} // end namespace ROOT
429
430
431
432
433#endif // ROOT_Math_GenVector_PtEtaPhiE4D
#define c(i)
Definition: RSha256.hxx:101
#define e(i)
Definition: RSha256.hxx:103
#define M_PI
Definition: Rotated.cxx:105
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t dest
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t src
Class describing a 4D cylindrical coordinate system using Pt , Phi, Eta and E (or rho,...
Definition: PtEtaPhiE4D.h:54
Scalar P2() const
squared magnitude of spatial components (momentum squared)
Definition: PtEtaPhiE4D.h:166
Scalar Et2() const
transverse energy squared
Definition: PtEtaPhiE4D.h:240
Scalar Mag2() const
Definition: PtEtaPhiE4D.h:180
void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e)
set values using cartesian coordinate system
Definition: PtEtaPhiE4D.h:389
Scalar P() const
magnitude of momentum
Definition: PtEtaPhiE4D.h:155
void SetEta(Scalar eta)
set eta value
Definition: PtEtaPhiE4D.h:270
Scalar Theta() const
polar angle
Definition: PtEtaPhiE4D.h:257
Scalar Phi() const
Definition: PtEtaPhiE4D.h:133
bool operator!=(const PtEtaPhiE4D &rhs) const
Definition: PtEtaPhiE4D.h:335
PtEtaPhiE4D(const PtEtaPhiE4D &v)
copy constructor
Definition: PtEtaPhiE4D.h:87
static Scalar pi()
Definition: PtEtaPhiE4D.h:247
PtEtaPhiE4D(const CoordSystem &c)
Generic constructor from any 4D coordinate system implementing Pt(), Eta(), Phi() and E()
Definition: PtEtaPhiE4D.h:78
Scalar Perp2() const
Definition: PtEtaPhiE4D.h:203
Scalar Et() const
transverse energy
Definition: PtEtaPhiE4D.h:232
PtEtaPhiE4D()
Default constructor gives zero 4-vector.
Definition: PtEtaPhiE4D.h:65
PtEtaPhiE4D & operator=(const PtEtaPhiE4D &v)
assignment operator
Definition: PtEtaPhiE4D.h:93
Scalar Eta() const
Definition: PtEtaPhiE4D.h:132
void SetE(Scalar e)
set E value
Definition: PtEtaPhiE4D.h:283
Scalar Perp() const
Definition: PtEtaPhiE4D.h:136
Scalar Rho() const
Definition: PtEtaPhiE4D.h:137
bool operator==(const PtEtaPhiE4D &rhs) const
Exact equality.
Definition: PtEtaPhiE4D.h:331
void SetCoordinates(const Scalar src[])
Set internal data based on an array of 4 Scalar numbers.
Definition: PtEtaPhiE4D.h:105
Scalar M2() const
vector magnitude squared (or mass squared)
Definition: PtEtaPhiE4D.h:175
void Negate()
negate the 4-vector
Definition: PtEtaPhiE4D.h:298
Scalar Mt() const
transverse mass
Definition: PtEtaPhiE4D.h:213
Scalar M() const
invariant mass
Definition: PtEtaPhiE4D.h:185
PtEtaPhiE4D(Scalar pt, Scalar eta, Scalar phi, Scalar e)
Constructor from pt, eta, phi, e values.
Definition: PtEtaPhiE4D.h:70
void GetCoordinates(Scalar dest[]) const
get internal data into an array of 4 Scalar numbers
Definition: PtEtaPhiE4D.h:111
Scalar Pt2() const
transverse spatial component squared
Definition: PtEtaPhiE4D.h:202
void SetCoordinates(Scalar pt, Scalar eta, Scalar phi, Scalar e)
Set internal data based on 4 Scalar numbers.
Definition: PtEtaPhiE4D.h:117
void Scale(Scalar a)
Scale coordinate values by a scalar quantity a.
Definition: PtEtaPhiE4D.h:307
void SetPt(Scalar pt)
set Pt value
Definition: PtEtaPhiE4D.h:264
Scalar Mt2() const
transverse mass squared
Definition: PtEtaPhiE4D.h:208
void GetCoordinates(Scalar &pt, Scalar &eta, Scalar &phi, Scalar &e) const
get internal data into 4 Scalar numbers
Definition: PtEtaPhiE4D.h:124
void SetPhi(Scalar phi)
set phi value
Definition: PtEtaPhiE4D.h:276
Scalar Mag() const
Definition: PtEtaPhiE4D.h:197
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:44
TPaveText * pt
RVec< PromoteType< T > > cosh(const RVec< T > &v)
Definition: RVec.hxx:1808
RVec< PromoteType< T > > cos(const RVec< T > &v)
Definition: RVec.hxx:1800
RVec< PromoteType< T > > floor(const RVec< T > &v)
Definition: RVec.hxx:1814
RVec< PromoteType< T > > sinh(const RVec< T > &v)
Definition: RVec.hxx:1807
RVec< PromoteType< T > > exp(const RVec< T > &v)
Definition: RVec.hxx:1785
RVec< PromoteType< T > > atan(const RVec< T > &v)
Definition: RVec.hxx:1804
RVec< PromoteType< T > > sin(const RVec< T > &v)
Definition: RVec.hxx:1799
Namespace for new Math classes and functions.
void Throw(const char *)
function throwing exception, by creating internally a GenVector_exception only when needed
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
Rotation3D::Scalar Scalar
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.
static constexpr double mm
TMarker m
Definition: textangle.C:8
TArc a
Definition: textangle.C:12