31#ifndef ROOT_TMVA_MethodFDA
32#define ROOT_TMVA_MethodFDA
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Class that contains all the data information.
Base class for TMVA fitters.
Interface for a fitter 'target'.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Function discriminant analysis (FDA).
void Train(void)
FDA training.
TString fFormulaStringT
string with function
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
Double_t EstimatorFunction(std::vector< Double_t > &)
compute estimator for given parameter set (to be minimised)
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
virtual ~MethodFDA(void)
destructor
Double_t InterpretFormula(const Event *, std::vector< Double_t >::iterator begin, std::vector< Double_t >::iterator end)
formula interpretation
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file
void CalculateMulticlassValues(const TMVA::Event *&evt, std::vector< Double_t > ¶meters, std::vector< Float_t > &values)
calculate the values for multiclass
void ReadWeightsFromStream(std::istream &i)
read back the training results from a file (stream)
virtual const std::vector< Float_t > & GetMulticlassValues()
Double_t fSumOfWeightsBkg
sum of weights (background)
Int_t fOutputDimensions
number of output values
MethodFDA(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor
void Init(void)
default initialisation
void ClearAll()
delete and clear all class members
std::vector< Interval * > fParRange
ranges of parameters
void PrintResults(const TString &, std::vector< Double_t > &, const Double_t) const
display fit parameters check maximum length of variable name
void MakeClassSpecific(std::ostream &, const TString &) const
write FDA-specific classifier response
Double_t fSumOfWeightsSig
sum of weights (signal)
TString fParRangeStringP
string with ranges of parameters
TFormula * fFormula
the discrimination function
const Ranking * CreateRanking()
virtual const std::vector< Float_t > & GetRegressionValues()
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
std::vector< Double_t > fBestPars
the pars that optimise (minimise) the estimator
IFitterTarget * fConvergerFitter
intermediate fitter
FitterBase * fFitter
the fitter used in the training
Double_t fSumOfWeights
sum of weights
TString fParRangeStringT
string with ranges of parameters
TString fFitMethod
estimator optimisation method
void CreateFormula()
translate formula string into TFormula, and parameter string into par ranges
void DeclareOptions()
define the options (their key words) that can be set in the option string
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
returns MVA value for given event
UInt_t fNPars
number of parameters
TString fConverger
fit method uses fConverger as intermediate step to converge into local minimas
void GetHelpMessage() const
get help message text
TString fFormulaStringP
string with function
Ranking for variables in method (implementation)
create variable transformations