1#ifndef TMVA_SOFIE_ROPERATOR_BatchNormalization
2#define TMVA_SOFIE_ROPERATOR_BatchNormalization
13namespace Experimental{
59 if(std::is_same<T, float>::value){
64 std::runtime_error(
"TMVA SOFIE Encountered unsupported type parsing a BatchNormalization operator");
75 if (
input.size() != 5 ) {
77 std::runtime_error(
"TMVA SOFIE BatchNormalization Op Shape inference need 5 input tensors");
79 for(
size_t i = 0; i <
input.size(); i++) {
82 std::runtime_error(
"TMVA SOFIE BatchNormalization Op Shape inference only accept tensor with 4 dimensions");
93 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNX +
" fnx is not found in model");
97 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNScale +
" fns is not found in model");
101 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNB +
" fnb is not found in model");
105 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNMean +
" fnm is not found in model");
109 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNVar +
" fnv is not found in model");
137 if (
fType ==
"float") {
146 size_t bs = 0, ch = 0,
h = 0,
w = 0;
159 for (
bs = 1;
bs < batchSize;
bs++) {
166 for (
size_t i = 0; i <
n; i++) {
190 throw std::runtime_error(
"TMVA SOFIE Batch Normalization called to Generate without being initialized first");
193 std::stringstream out;
202 out <<
"\n\n//---- BatchNorm\n";
204 out <<
SP <<
"constexpr int "<<
OpName<<
"_incx = 1;\n";
205 out <<
SP <<
"constexpr int "<<
OpName<<
"_incy = 1;\n";
206 out <<
SP <<
"BLAS::scopy_(&" <<
OpName <<
"_N, " <<
"tensor_" <<
fNX <<
", &" <<
OpName <<
"_incx," <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n";
209 out <<
SP <<
"float "<<
OpName<<
"_alpha = -1;\n";
210 out <<
SP <<
"BLAS::saxpy_(&" <<
OpName <<
"_N, &" <<
OpName <<
"_alpha, " <<
"tensor_" <<
fNMean <<
", &" <<
OpName <<
"_incx,"
211 <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n ";
214 out <<
SP <<
"for (size_t i = 0; i < " <<
n <<
"; i++) {\n";
216 out <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[i] *= tensor_" <<
fNScale <<
"[i]; \n";
220 out <<
SP <<
OpName<<
"_alpha = 1;\n";
221 out <<
SP <<
"BLAS::saxpy_(&" <<
OpName <<
"_N, &" <<
OpName <<
"_alpha, " <<
"tensor_" <<
fNB <<
", &" <<
OpName <<
"_incx, "
222 <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n";
226 out <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[id] = ((tensor_" <<
fNY <<
"[id] > 0 )? tensor_" <<
fNY <<
"[id] : 0);\n";
232 std::vector<std::string>
GetBlasRoutines()
override {
return { std::string(
"Copy"), std::string(
"Axpy") }; }
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t height
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const ETensorType & GetTensorType(std::string name) const
const std::vector< size_t > & GetTensorShape(std::string name) const
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
void UpdateInitializedTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
std::vector< size_t > fShapeScale
std::vector< std::string > GetBlasRoutines() override
void Initialize(RModel &model) override
ROperator_BatchNormalization()=delete
std::vector< size_t > fShapeY
std::vector< size_t > fShapeX
std::vector< size_t > fShapeB
std::vector< size_t > fShapeMean
std::size_t ftraining_mode
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::string Generate(std::string OpName) override
ROperator_BatchNormalization(float epsilon, float momentum, std::size_t training_mode, std::string nameX, std::string nameScale, std::string nameB, std::string nameMean, std::string nameVar, std::string nameY, EActivationType activation=EActivationType::UNDEFINED)
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::vector< size_t > fShapeVar
EActivationType fActivation
std::vector< std::string_view > fInputTensorNames
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
std::string ConvertShapeToString(std::vector< size_t > shape)
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
create variable transformations