148   norm[2] = (dir[2] >= 0) ? 1 : -1;
 
 
  235   for (
Int_t i = 0; i < 3; i++)
 
  238      dist[0] = -(point[2] + 
fDz) / dir[2];
 
  239   } 
else if (dir[2] > 0) {
 
  240      dist[0] = (
fDz - point[2]) / dir[2];
 
  245   cn = -dir[0] + 
fx * dir[2];
 
  247      dist[1] = point[0] + 
distx;
 
  252   cn = dir[0] + 
fx * dir[2];
 
  262   cn = -dir[1] + 
fy * dir[2];
 
  264      dist[2] = point[1] + 
disty;
 
  269   cn = dir[1] + 
fy * dir[2];
 
 
  310   if (point[2] <= -
fDz) {
 
  323   } 
else if (point[2] >= 
fDz) {
 
  338   if (point[0] <= -
distx) {
 
  339      cn = -dir[0] + 
fx * dir[2];
 
  353   if (point[0] >= 
distx) {
 
  354      cn = dir[0] + 
fx * dir[2];
 
  369   if (point[1] <= -
disty) {
 
  370      cn = -dir[1] + 
fy * dir[2];
 
  384   if (point[1] >= 
disty) {
 
  385      cn = dir[1] + 
fy * dir[2];
 
  403      if (point[2] * dir[2] >= 0)
 
 
  453   if (point[0] > 
distx) {
 
  463   if (point[1] > 
disty) {
 
  473   if (point[2] > 
fDz) {
 
 
  527   case 1: 
Warning(
"Divide", 
"dividing a Trd2 on X not implemented"); 
return nullptr;
 
  528   case 2: 
Warning(
"Divide", 
"dividing a Trd2 on Y not implemented"); 
return nullptr;
 
  534      for (
id = 0; 
id < ndiv; 
id++) {
 
  535         zmin = start + 
id * step;
 
  536         zmax = start + (
id + 1) * step;
 
  545         voldiv->AddNodeOffset(vol, 
id, start + step / 2 + 
id * step, opt.
Data());
 
  549   default: 
Error(
"Divide", 
"Wrong axis type for division"); 
return nullptr;
 
 
  568   if (
mat->IsRotation()) {
 
  569      Error(
"GetFittingBox", 
"cannot handle parametrized rotated volumes");
 
  576      Error(
"GetFittingBox", 
"wrong matrix - parametrized box is outside this");
 
  588         Error(
"GetFittingBox", 
"wrong matrix");
 
  592   if (dd[0] >= 0 && dd[1] >= 0) {
 
  609   if (dd[0] < 0 || dd[1] < 0) {
 
  610      Error(
"GetFittingBox", 
"wrong matrix");
 
 
  628      Error(
"GetMakeRuntimeShape", 
"invalid mother");
 
 
  667   printf(
" Bounding box:\n");
 
 
  701   for (
Int_t i = 0; i < 3; i++)
 
 
  714   out << 
"   dx1 = " << 
fDx1 << 
";" << std::endl;
 
  715   out << 
"   dx2 = " << 
fDx2 << 
";" << std::endl;
 
  716   out << 
"   dy1 = " << 
fDy1 << 
";" << std::endl;
 
  717   out << 
"   dy2 = " << 
fDy2 << 
";" << std::endl;
 
  718   out << 
"   dz  = " << 
fDZ << 
";" << std::endl;
 
  719   out << 
"   TGeoShape *" << 
GetPointerName() << 
" = new TGeoTrd2(\"" << 
GetName() << 
"\", dx1,dx2,dy1,dy2,dz);" 
 
float Float_t
Float 4 bytes (float)
 
double Double_t
Double 8 bytes.
 
const char Option_t
Option string (const char)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize id
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t points
 
R__EXTERN TGeoManager * gGeoManager
 
void GetBoundingCylinder(Double_t *param) const override
Fill vector param[4] with the bounding cylinder parameters.
 
void InspectShape() const override
Prints shape parameters.
 
void Sizeof3D() const override
 
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
 
Geometrical transformation package.
 
Node containing an offset.
 
base finder class for patterns. A pattern is specifying a division type
 
Base abstract class for all shapes.
 
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
 
const char * GetPointerName() const
Provide a pointer name containing uid.
 
const char * GetName() const override
Get the shape name.
 
static Double_t Tolerance()
 
Bool_t TestShapeBit(UInt_t f) const
 
A trapezoid with only X varying with Z.
 
void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const override
Compute distance from array of input points having directions specified by dirs. Store output in dist...
 
void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm) const override
Compute normal to closest surface from POINT.
 
Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const override
Fills real parameters of a positioned box inside this. Returns 0 if successful.
 
Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const override
Compute distance from outside point to surface of the trd2 Boundary safe algorithm.
 
Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const override
computes the closest distance from given point to this shape, according to option.
 
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save a primitive as a C++ statement(s) on output stream "out".
 
void SetPoints(Double_t *points) const override
create trd2 mesh points
 
void Sizeof3D() const override
fill size of this 3-D object
 
Double_t Capacity() const override
Computes capacity of the shape in [length^3].
 
void ComputeBBox() override
compute bounding box for a trd2
 
Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const override
Get range of shape for a given axis.
 
void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const override
Compute safe distance from each of the points in the input array.
 
void SetDimensions(Double_t *param) override
set arb8 params in one step :
 
void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const override
Compute distance from array of input points having directions specified by dirs. Store output in dist...
 
TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step) override
Divide this trd2 shape belonging to volume "voldiv" into ndiv volumes called divname,...
 
void GetBoundingCylinder(Double_t *param) const override
Fill vector param[4] with the bounding cylinder parameters.
 
void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize) override
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
 
void GetOppositeCorner(const Double_t *point, Int_t inorm, Double_t *vertex, Double_t *normals) const
get the opposite corner of the intersected face
 
void SetVertex(Double_t *vertex) const
set vertex of a corner according to visibility flags
 
Bool_t Contains(const Double_t *point) const override
test if point is inside this shape check Z range
 
Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const override
Compute distance from inside point to surface of the trd2 Boundary safe algorithm.
 
void InspectShape() const override
print shape parameters
 
void GetVisibleCorner(const Double_t *point, Double_t *vertex, Double_t *normals) const
get the most visible corner from outside point and the normals
 
void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const override
Check the inside status for each of the points in the array.
 
TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const override
in case shape has some negative parameters, these has to be computed in order to fit the mother
 
~TGeoTrd2() override
destructor
 
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
 
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
 
virtual const char * ClassName() const
Returns name of class to which the object belongs.
 
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
 
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
 
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
 
const char * Data() const
 
Long64_t LocMin(Long64_t n, const T *a)
Returns index of array with the minimum element.
 
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
 
T1 Sign(T1 a, T2 b)
Returns a value with the magnitude of a and the sign of b.
 
Long64_t LocMax(Long64_t n, const T *a)
Returns index of array with the maximum element.
 
Double_t Sqrt(Double_t x)
Returns the square root of x.
 
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.