39 return 3.14159265358979323846;
88 return 1.4142135623730950488016887242097;
95 return 2.71828182845904523536;
102 return 2.30258509299404568402;
109 return 0.43429448190325182765;
190 return 6.62607015e-34;
213 return 1.054571817e-34;
220 return 1.0e7 *
Hbar();
286 return 6.02214076e+23;
327 return (1000.0 *
R()) /
MWair();
334 return 0.577215664901532860606512090082402431042;
341 return 1.602176634e-19;
408 inline static T
Min();
409 inline static T
Max();
441 template <
typename Iterator> Iterator
LocMin(Iterator first, Iterator last);
443 template <
typename Iterator> Iterator
LocMax(Iterator first, Iterator last);
469 template <
typename T> T *
Cross(
const T
v1[3],
const T
v2[3], T out[3]);
475 template <
typename T>
inline T
NormCross(
const T
v1[3],
const T
v2[3],T out[3]);
478 template <
typename T> T *
Normal2Plane(
const T
v1[3],
const T
v2[3],
const T
v3[3], T normal[3]);
521 template <
typename Iterator>
Double_t Mean(Iterator first, Iterator last);
522 template <
typename Iterator,
typename WeightIterator>
Double_t Mean(Iterator first, Iterator last, WeightIterator wfirst);
525 template <
typename Iterator>
Double_t GeomMean(Iterator first, Iterator last);
528 template <
typename Iterator>
Double_t RMS(Iterator first, Iterator last);
529 template <
typename Iterator,
typename WeightIterator>
Double_t RMS(Iterator first, Iterator last, WeightIterator wfirst);
532 template <
typename Iterator>
Double_t StdDev(Iterator first, Iterator last) {
return RMS<Iterator>(first,last); }
533 template <
typename Iterator,
typename WeightIterator>
Double_t StdDev(Iterator first, Iterator last, WeightIterator wfirst) {
return RMS<Iterator,WeightIterator>(first,last,wfirst); }
538 template <
class Element,
typename Size> Element
KOrdStat(Size
n,
const Element *
a, Size k, Size *work = 0);
585# define finite _finite
651 {
if (
x != 0)
return atan2(
y,
x);
652 if (
y == 0)
return 0;
653 if (
y > 0)
return Pi()/2;
702 if ( i & 1 &&
x + 0.5 == T(i) ) i--;
705 if ( i & 1 &&
x - 0.5 == T(i) ) i++;
720 {
return ldexp(
x, exp); }
726 {
return std::pow(
x,
y); }
738 {
return std::pow(
x,
y); }
744 {
return pow(
x,
y); }
751 return std::pow(
x,
y);
775#if defined(R__FAST_MATH)
778 const unsigned long long mask = 0x7FF0000000000000LL;
779 union {
unsigned long long l;
double d;}
v;
784# if defined(R__HPUX11)
785 {
return isfinite(
x); }
786# elif defined(R__MACOSX)
789 {
return isfinite(
x); }
792 {
return std::isfinite(
x); }
795 {
return finite(
x); }
805#if defined(R__FAST_MATH)
808 const unsigned int mask = 0x7f800000;
809 union {
unsigned int l;
float d;}
v;
814{
return std::isfinite(
x); }
822#if defined (R__FAST_MATH)
849 } ieee_double_shape_type;
851#define EXTRACT_WORDS(ix0,ix1,d) \
853 ieee_double_shape_type ew_u; \
855 (ix0) = ew_u.parts.msw; \
856 (ix1) = ew_u.parts.lsw; \
863 EXTRACT_WORDS(hx, lx,
x);
867 return (hx == 0x7ff00000) && (lx != 0);
873 } ieee_float_shape_type;
875#define GET_FLOAT_WORD(i,d) \
877 ieee_float_shape_type gf_u; \
885 GET_FLOAT_WORD (wx,
x);
887 return (
Bool_t)(wx > 0x7f800000);
892#if defined(R__FAST_MATH)
908 return std::numeric_limits<Double_t>::quiet_NaN();
915 return std::numeric_limits<Double_t>::signaling_NaN();
922 return std::numeric_limits<Double_t>::infinity();
930 return (std::numeric_limits<T>::min)();
938 return (std::numeric_limits<T>::max)();
946 return std::numeric_limits<T>::epsilon();
965 return *std::min_element(
a,
a+
n);
973 return *std::max_element(
a,
a+
n);
987 if (
n <= 0 || !
a)
return -1;
1003template <
typename Iterator>
1006 return std::min_element(first, last);
1021template <
typename T>
1025 ::Error(
"TMath::Gradient",
"Input parameter f is empty.");
1028 ::Error(
"TMath::Gradient",
"Input parameter n=%lld is smaller than 2.",
n);
1039 result[i] = (
f[i + 1] -
f[i - 1]) / (2 *
h);
1059template <
typename T>
1063 ::Error(
"TMath::Laplacian",
"Input parameter f is empty.");
1066 ::Error(
"TMath::Laplacian",
"Input parameter n=%lld is smaller than 4.",
n);
1073 result[0] = (4 *
f[2] + 2 *
f[0] - 5 *
f[1] -
f[3]) / (4 *
h *
h);
1077 result[i] = (
f[i + 1] +
f[i - 1] - 2 *
f[i]) / (4 *
h *
h);
1081 result[i] = (2 *
f[i] - 5 *
f[i - 1] + 4 *
f[i - 2] -
f[i - 3]) / (4 *
h *
h);
1091template <
typename T>
1093 if (
n <= 0 || !
a)
return -1;
1109template <
typename Iterator>
1113 return std::max_element(first, last);
1119template <
typename Iterator>
1124 while ( first != last )
1139template <
typename Iterator,
typename WeightIterator>
1146 while ( first != last ) {
1148 ::Error(
"TMath::Mean",
"w[%d] = %.4e < 0 ?!",i,*
w);
1151 sum += (*w) * (*first);
1158 ::Error(
"TMath::Mean",
"sum of weights == 0 ?!");
1168template <
typename T>
1182template <
typename Iterator>
1187 while ( first != last ) {
1188 if (*first == 0)
return 0.;
1202template <
typename T>
1217template <
typename Iterator>
1225 while ( first != last ) {
1227 tot += (
x - mean)*(
x - mean);
1242template <
typename Iterator,
typename WeightIterator>
1249 while ( first != last ) {
1252 sumw2 += (*w) * (*w);
1253 tot += (*w) * (
x - mean)*(
x - mean);
1267template <
typename T>
1279 out[0] =
v1[1] *
v2[2] -
v1[2] *
v2[1];
1280 out[1] =
v1[2] *
v2[0] -
v1[0] *
v2[2];
1281 out[2] =
v1[0] *
v2[1] -
v1[1] *
v2[0];
1296 v1[0] = p2[0] - p1[0];
1297 v1[1] = p2[1] - p1[1];
1298 v1[2] = p2[2] - p1[2];
1300 v2[0] = p3[0] - p1[0];
1301 v2[1] = p3[1] - p1[1];
1302 v2[2] = p3[2] - p1[2];
1318 for (i=0; i<
np; i++) {
1319 if ((
y[i]<yp &&
y[j]>=yp) || (
y[j]<yp &&
y[i]>=yp)) {
1320 if (
x[i]+(yp-
y[i])/(
y[j]-
y[i])*(
x[j]-
x[i])<xp) {
1321 oddNodes = !oddNodes;
1355 const Int_t kWorkMax = 100;
1357 if (
n <= 0 || !
a)
return 0;
1368 isAllocated =
kTRUE;
1375 for (
Int_t j = 0; j <
n; j++) {
1377 ::Error(
"TMath::Median",
"w[%d] = %.4e < 0 ?!",j,
w[j]);
1378 if (isAllocated)
delete [] ind;
1390 for (jl = 0; jl <
n; jl++) {
1392 if (
sum >= sumTot2)
break;
1397 for (jh =
n-1; jh >= 0; jh--) {
1399 if (
sum <= sumTot2)
break;
1402 median = 0.5*(
a[ind[jl]]+
a[ind[jh]]);
1438template <
class Element,
typename Size>
1442 const Int_t kWorkMax = 100;
1447 Size i, ir, j,
l, mid;
1450 Index workLocal[kWorkMax];
1458 isAllocated =
kTRUE;
1463 for (Size ii=0; ii<
n; ii++) {
1471 if (ir ==
l+1 &&
a[ind[ir]]<
a[ind[
l]])
1472 {temp = ind[
l]; ind[
l]=ind[ir]; ind[ir]=temp;}
1473 Element tmp =
a[ind[rk]];
1479 {temp = ind[mid]; ind[mid]=ind[
l+1]; ind[
l+1]=temp;}
1480 if (
a[ind[
l]]>
a[ind[ir]])
1481 {temp = ind[
l]; ind[
l]=ind[ir]; ind[ir]=temp;}
1483 if (
a[ind[
l+1]]>
a[ind[ir]])
1484 {temp=ind[
l+1]; ind[
l+1]=ind[ir]; ind[ir]=temp;}
1486 if (
a[ind[
l]]>
a[ind[
l+1]])
1487 {temp = ind[
l]; ind[
l]=ind[
l+1]; ind[
l+1]=temp;}
1493 do i++;
while (
a[ind[i]]<
a[arr]);
1494 do j--;
while (
a[ind[j]]>
a[arr]);
1496 {temp=ind[i]; ind[i]=ind[j]; ind[j]=temp;}
1500 if (j>=rk) ir = j-1;
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
TGLVector3 Cross(const TGLVector3 &v1, const TGLVector3 &v2)
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t mask
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Namespace for new Math classes and functions.
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Double_t FDistI(Double_t F, Double_t N, Double_t M)
Calculates the cumulative distribution function of F-distribution (see ROOT::Math::fdistribution_cdf)...
Double_t GeomMean(Long64_t n, const T *a)
Returns the geometric mean of an array a of size n.
Double_t LogNormal(Double_t x, Double_t sigma, Double_t theta=0, Double_t m=1)
Computes the density of LogNormal distribution at point x.
T * Laplacian(Long64_t n, T *f, double h=1)
Calculate the Laplacian of an array with length n.
constexpr Double_t G()
Gravitational constant in: .
Double_t CosH(Double_t)
Returns the hyperbolic cosine of x.
T * Normal2Plane(const T v1[3], const T v2[3], const T v3[3], T normal[3])
Calculates a normal vector of a plane.
Double_t DiLog(Double_t x)
Modified Struve functions of order 1.
Double_t BetaDist(Double_t x, Double_t p, Double_t q)
Computes the probability density function of the Beta distribution (the cumulative distribution funct...
Double_t ACos(Double_t)
Returns the principal value of the arc cosine of x, expressed in radians.
Double_t BesselI(Int_t n, Double_t x)
Computes the Integer Order Modified Bessel function I_n(x) for n=0,1,2,... and any real x.
Element KOrdStat(Size n, const Element *a, Size k, Size *work=0)
Returns k_th order statistic of the array a of size n (k_th smallest element out of n elements).
T * Gradient(Long64_t n, T *f, double h=1)
Calculate the one-dimensional gradient of an array with length n.
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculates a gaussian function with mean and sigma.
constexpr Double_t GUncertainty()
Gravitational constant uncertainty.
constexpr Double_t C()
Velocity of light in .
Double_t Factorial(Int_t i)
Computes factorial(n).
Double_t RMS(Long64_t n, const T *a, const Double_t *w=nullptr)
Returns the Standard Deviation of an array a with length n.
Double_t KolmogorovTest(Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option)
Statistical test whether two one-dimensional sets of points are compatible with coming from the same ...
constexpr Double_t GhbarCUncertainty()
uncertainty.
Long64_t LocMin(Long64_t n, const T *a)
Returns index of array with the minimum element.
constexpr Double_t Ccgs()
constexpr Double_t SigmaUncertainty()
Stefan-Boltzmann constant uncertainty.
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Double_t BinomialI(Double_t p, Int_t n, Int_t k)
Suppose an event occurs with probability p per trial Then the probability P of its occurring k or mor...
Double_t Vavilov(Double_t x, Double_t kappa, Double_t beta2)
Returns the value of the Vavilov probability density function.
Double_t Binomial(Int_t n, Int_t k)
Calculates the binomial coefficient n over k.
Float_t Normalize(Float_t v[3])
Normalize a vector v in place.
constexpr Double_t NaUncertainty()
Avogadro constant (Avogadro's Number) uncertainty.
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Bool_t IsInside(T xp, T yp, Int_t np, T *x, T *y)
Function which returns kTRUE if point xp,yp lies inside the polygon defined by the np points in array...
Double_t ASin(Double_t)
Returns the principal value of the arc sine of x, expressed in radians.
Double_t Log2(Double_t x)
Returns the binary (base-2) logarithm of x.
Double_t BesselK1(Double_t x)
Modified Bessel function I_1(x)
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
void BubbleHigh(Int_t Narr, Double_t *arr1, Int_t *arr2)
Bubble sort variant to obtain the order of an array's elements into an index in order to do more usef...
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
Double_t BesselI1(Double_t x)
Modified Bessel function K_0(x)
Double_t Erf(Double_t x)
Computation of the error function erf(x).
Bool_t Permute(Int_t n, Int_t *a)
Simple recursive algorithm to find the permutations of n natural numbers, not necessarily all distinc...
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Double_t PoissonI(Double_t x, Double_t par)
Computes the Discrete Poisson distribution function for (x,par).
Double_t CauchyDist(Double_t x, Double_t t=0, Double_t s=1)
Computes the density of Cauchy distribution at point x by default, standard Cauchy distribution is us...
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Double_t StruveL1(Double_t x)
Modified Struve functions of order 0.
constexpr Double_t Gn()
Standard acceleration of gravity in .
Double_t ASinH(Double_t)
Returns the area hyperbolic sine of x.
Double_t LaplaceDistI(Double_t x, Double_t alpha=0, Double_t beta=1)
Computes the cumulative distribution function (lower tail integral) of Laplace distribution at point ...
ULong_t Hash(const void *txt, Int_t ntxt)
Calculates hash index from any char string.
constexpr Double_t QeUncertainty()
Elementary charge uncertainty.
constexpr Double_t K()
Boltzmann's constant in : .
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculates a Breit Wigner function with mean and gamma.
constexpr Double_t Sqrt2()
constexpr Double_t KUncertainty()
Boltzmann's constant uncertainty.
constexpr Double_t Hbarcgs()
Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE)
The LANDAU function.
Double_t Voigt(Double_t x, Double_t sigma, Double_t lg, Int_t r=4)
Computation of Voigt function (normalised).
Double_t Student(Double_t T, Double_t ndf)
Computes density function for Student's t- distribution (the probability function (integral of densit...
constexpr Double_t CUncertainty()
Speed of light uncertainty.
constexpr Double_t Qe()
Elementary charge in .
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
constexpr Double_t PiOver2()
constexpr Double_t HCcgs()
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Double_t BetaDistI(Double_t x, Double_t p, Double_t q)
Computes the cumulative distribution function of the Beta distribution, i.e.
T NormCross(const T v1[3], const T v2[3], T out[3])
Calculates the Normalized Cross Product of two vectors.
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
Double_t TanH(Double_t)
Returns the hyperbolic tangent of x.
Int_t FloorNint(Double_t x)
Returns the nearest integer of TMath::Floor(x).
Double_t ACosH(Double_t)
Returns the nonnegative area hyperbolic cosine of x.
Double_t BesselK0(Double_t x)
Modified Bessel function I_0(x)
Double_t BesselY0(Double_t x)
Bessel function J1(x) for any real x.
Double_t ATan2(Double_t y, Double_t x)
Returns the principal value of the arc tangent of y/x, expressed in radians.
constexpr Double_t RUncertainty()
Universal gas constant uncertainty.
Double_t BetaCf(Double_t x, Double_t a, Double_t b)
Continued fraction evaluation by modified Lentz's method used in calculation of incomplete Beta funct...
Long64_t LocMax(Long64_t n, const T *a)
Returns index of array with the maximum element.
Double_t ErfInverse(Double_t x)
Returns the inverse error function.
Double_t LaplaceDist(Double_t x, Double_t alpha=0, Double_t beta=1)
Computes the probability density function of Laplace distribution at point x, with location parameter...
constexpr Double_t E()
Base of natural log: .
constexpr Double_t GnUncertainty()
Standard acceleration of gravity uncertainty.
constexpr Double_t Hcgs()
constexpr Double_t HUncertainty()
Planck's constant uncertainty.
Double_t Log(Double_t x)
Returns the natural logarithm of x.
constexpr Double_t DegToRad()
Conversion from degree to radian: .
Double_t Erfc(Double_t x)
Computes the complementary error function erfc(x).
Double_t VavilovI(Double_t x, Double_t kappa, Double_t beta2)
Returns the value of the Vavilov cumulative distribution function (lower tail integral of the probabi...
constexpr Double_t Sigma()
Stefan-Boltzmann constant in : .
Double_t Beta(Double_t p, Double_t q)
Calculates Beta-function Gamma(p)*Gamma(q)/Gamma(p+q).
constexpr Double_t Kcgs()
Double_t Sq(Double_t x)
Returns x*x.
Double_t Poisson(Double_t x, Double_t par)
Computes the Poisson distribution function for (x,par).
constexpr Double_t H()
Planck's constant in : .
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Int_t CeilNint(Double_t x)
Returns the nearest integer of TMath::Ceil(x).
Double_t Ldexp(Double_t x, Int_t exp)
Returns the result of multiplying x (the significant) by 2 raised to the power of exp (the exponent).
Double_t BesselJ0(Double_t x)
Modified Bessel function K_1(x)
constexpr Double_t LogE()
Base-10 log of e (to convert ln to log)
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z.
constexpr Double_t MWair()
Molecular weight of dry air 1976 US Standard Atmosphere in or
constexpr Double_t Gcgs()
Double_t StruveL0(Double_t x)
Struve functions of order 1.
Double_t NormQuantile(Double_t p)
Computes quantiles for standard normal distribution N(0, 1) at probability p.
constexpr Double_t Ln10()
Natural log of 10 (to convert log to ln)
Double_t Hypot(Double_t x, Double_t y)
Returns sqrt(x*x + y*y)
constexpr Double_t EulerGamma()
Euler-Mascheroni Constant.
constexpr Double_t PiOver4()
Double_t Cos(Double_t)
Returns the cosine of an angle of x radians.
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
Double_t StruveH0(Double_t x)
Bessel function Y1(x) for positive x.
constexpr Double_t R()
Universal gas constant ( ) in
Double_t LnGamma(Double_t z)
Computation of ln[gamma(z)] for all z.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Double_t Mean(Long64_t n, const T *a, const Double_t *w=nullptr)
Returns the weighted mean of an array a with length n.
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
constexpr Double_t InvPi()
Bool_t RootsCubic(const Double_t coef[4], Double_t &a, Double_t &b, Double_t &c)
Calculates roots of polynomial of 3rd order a*x^3 + b*x^2 + c*x + d, where.
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
Double_t FDist(Double_t F, Double_t N, Double_t M)
Computes the density function of F-distribution (probability function, integral of density,...
Double_t SignalingNaN()
Returns a signaling NaN as defined by IEEE 754](http://en.wikipedia.org/wiki/NaN#Signaling_NaN).
Double_t BreitWignerRelativistic(Double_t x, Double_t median=0, Double_t gamma=1)
Calculates a Relativistic Breit Wigner function with median and gamma.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
T * Cross(const T v1[3], const T v2[3], T out[3])
Calculates the Cross Product of two vectors: out = [v1 x v2].
void BubbleLow(Int_t Narr, Double_t *arr1, Int_t *arr2)
Opposite ordering of the array arr2[] to that of BubbleHigh.
Double_t BesselK(Int_t n, Double_t x)
Integer order modified Bessel function I_n(x)
constexpr Double_t Na()
Avogadro constant (Avogadro's Number) in .
T MaxElement(Long64_t n, const T *a)
Returns maximum of array a of length n.
Double_t BesselJ1(Double_t x)
Bessel function J0(x) for any real x.
Double_t BetaIncomplete(Double_t x, Double_t a, Double_t b)
Calculates the incomplete Beta-function.
constexpr Double_t Rgair()
Dry Air Gas Constant (R / MWair) in
constexpr Double_t Hbar()
in :
Double_t StruveH1(Double_t x)
Struve functions of order 0.
Double_t Freq(Double_t x)
Computation of the normal frequency function freq(x).
Double_t Tan(Double_t)
Returns the tangent of an angle of x radians.
Double_t LandauI(Double_t x)
Returns the cumulative (lower tail integral) of the Landau distribution function at point x.
Double_t StdDev(Long64_t n, const T *a, const Double_t *w=nullptr)
Double_t ATanH(Double_t)
Returns the area hyperbolic tangent of x.
constexpr Double_t RadToDeg()
Conversion from radian to degree: .
Double_t BesselI0(Double_t x)
Integer order modified Bessel function K_n(x)
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Double_t StudentI(Double_t T, Double_t ndf)
Calculates the cumulative distribution function of Student's t-distribution second parameter stands f...
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...
Double_t BesselY1(Double_t x)
Bessel function Y0(x) for positive x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1)
Computes the density function of Gamma distribution at point x.
constexpr Double_t GhbarC()
in
constexpr Double_t HC()
in
constexpr Double_t TwoPi()
constexpr Double_t HbarUncertainty()
uncertainty.
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Double_t ErfcInverse(Double_t x)
Returns the inverse of the complementary error function.
Double_t SinH(Double_t)
Returns the hyperbolic sine of `x.
static T Min()
Returns maximum representation for type T.
static T Epsilon()
Returns minimum double representation.
static T Max()
Returns minimum double representation.
static uint64_t sum(uint64_t i)