Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA_SOFIE_Models.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Example of inference with SOFIE using a set of models trained with Keras.

This tutorial shows how to store several models in a single header file and the weights in a ROOT binary file. The models are then evaluated using the RDataFrame First, generate the input model by running TMVA_Higgs_Classification.C.

This tutorial parses the input model and runs the inference using ROOT's JITing capability.

import os
import numpy as np
import ROOT
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
## generate and train Keras models with different architectures
def CreateModel(nlayers = 4, nunits = 64):
model = Sequential()
model.add(Dense(nunits, activation='relu',input_dim=7))
for i in range(1,nlayers) :
model.add(Dense(nunits, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss = 'binary_crossentropy', optimizer = Adam(learning_rate = 0.001), weighted_metrics = ['accuracy'])
return model
def PrepareData() :
#get the input data
inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/machine_learning/data/Higgs_data.root"
df1 = ROOT.RDataFrame("sig_tree", inputFile)
sigData = df1.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
#print(sigData)
# stack all the 7 numpy array in a single array (nevents x nvars)
data_sig_size = xsig.shape[0]
print("size of data", data_sig_size)
# make SOFIE inference on background data
df2 = ROOT.RDataFrame("bkg_tree", inputFile)
bkgData = df2.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
data_bkg_size = xbkg.shape[0]
ysig = np.ones(data_sig_size)
ybkg = np.zeros(data_bkg_size)
inputs_data = np.concatenate((xsig,xbkg),axis=0)
inputs_targets = np.concatenate((ysig,ybkg),axis=0)
#split data in training and test data
x_train, x_test, y_train, y_test = train_test_split(
inputs_data, inputs_targets, test_size=0.50, random_state=1234)
return x_train, y_train, x_test, y_test
def TrainModel(model, x, y, name) :
model.fit(x,y,epochs=10,batch_size=50)
modelFile = name + '.h5'
model.save(modelFile)
return modelFile
### run the models
x_train, y_train, x_test, y_test = PrepareData()
## create models and train them
model1 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_50')
model2 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_200')
model3 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_2L_500')
#evaluate with SOFIE the 3 trained models
def GenerateModelCode(modelFile, generatedHeaderFile):
print("Generating inference code for the Keras model from ",modelFile,"in the header ", generatedHeaderFile)
#Generating inference code using a ROOT binary file
# add option to append to the same file the generated headers (pass True for append flag)
model.OutputGenerated(generatedHeaderFile, True)
#model.PrintGenerated()
return generatedHeaderFile
generatedHeaderFile = "Higgs_Model.hxx"
#need to remove existing header file since we are appending on same one
if (os.path.exists(generatedHeaderFile)):
weightFile = "Higgs_Model.root"
print("removing existing files", generatedHeaderFile,weightFile)
os.remove(generatedHeaderFile)
os.remove(weightFile)
GenerateModelCode(model1, generatedHeaderFile)
GenerateModelCode(model2, generatedHeaderFile)
GenerateModelCode(model3, generatedHeaderFile)
#compile the generated code
ROOT.gInterpreter.Declare('#include "' + generatedHeaderFile + '"')
#run the inference on the test data
session1 = ROOT.TMVA_SOFIE_Higgs_Model_4L_50.Session("Higgs_Model.root")
session2 = ROOT.TMVA_SOFIE_Higgs_Model_4L_200.Session("Higgs_Model.root")
session3 = ROOT.TMVA_SOFIE_Higgs_Model_2L_500.Session("Higgs_Model.root")
hs1 = ROOT.TH1D("hs1","Signal result 4L 50",100,0,1)
hs2 = ROOT.TH1D("hs2","Signal result 4L 200",100,0,1)
hs3 = ROOT.TH1D("hs3","Signal result 2L 500",100,0,1)
hb1 = ROOT.TH1D("hb1","Background result 4L 50",100,0,1)
hb2 = ROOT.TH1D("hb2","Background result 4L 200",100,0,1)
hb3 = ROOT.TH1D("hb3","Background result 2L 500",100,0,1)
def EvalModel(session, x) :
result = session.infer(x)
return result[0]
for i in range(0,x_test.shape[0]):
result1 = EvalModel(session1, x_test[i,:])
result2 = EvalModel(session2, x_test[i,:])
result3 = EvalModel(session3, x_test[i,:])
if (y_test[i] == 1) :
hs1.Fill(result1)
hs2.Fill(result2)
hs3.Fill(result3)
else:
hb1.Fill(result1)
hb2.Fill(result2)
hb3.Fill(result3)
def PlotHistos(hs,hb):
hb.SetLineColor("kBlue")
hb.Draw("same")
PlotHistos(hs1,hb1)
PlotHistos(hs2,hb2)
PlotHistos(hs3,hb3)
## draw also ROC curves
def GetContent(h) :
x = ROOT.std.vector['float'](n)
w = ROOT.std.vector['float'](n)
for i in range(0,n):
x[i] = h.GetBinCenter(i+1)
w[i] = h.GetBinContent(i+1)
return x,w
def MakeROCCurve(hs, hb) :
xs,ws = GetContent(hs)
xb,wb = GetContent(hb)
roc = ROOT.TMVA.ROCCurve(xs,xb,ws,wb)
print("ROC integral for ",hs.GetName(), roc.GetROCIntegral())
curve = roc.GetROCCurve()
return roc,curve
r1,curve1 = MakeROCCurve(hs1,hb1)
r2,curve2 = MakeROCCurve(hs2,hb2)
r3,curve3 = MakeROCCurve(hs3,hb3)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
size of data 10000
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_3 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_4 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2:10␛[0m 658ms/step - accuracy: 0.4800 - loss: 0.6910␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 48/200␛[0m ␛[32m━━━━␛[0m␛[37m━━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5413 - loss: 0.6877 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 97/200␛[0m ␛[32m━━━━━━━━━␛[0m␛[37m━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5529 - loss: 0.6835␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m144/200␛[0m ␛[32m━━━━━━━━━━━━━━␛[0m␛[37m━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5617 - loss: 0.6797␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m198/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5691 - loss: 0.6764␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 1ms/step - accuracy: 0.5694 - loss: 0.6762
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.6600 - loss: 0.6263␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 53/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 975us/step - accuracy: 0.6186 - loss: 0.6484␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m103/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 989us/step - accuracy: 0.6228 - loss: 0.6495␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m147/200␛[0m ␛[32m━━━━━━━━━━━━━━␛[0m␛[37m━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6256 - loss: 0.6482 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m194/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6278 - loss: 0.6469␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6280 - loss: 0.6468
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 15ms/step - accuracy: 0.6600 - loss: 0.6456␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 50/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6315 - loss: 0.6468 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m101/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6328 - loss: 0.6440␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m146/200␛[0m ␛[32m━━━━━━━━━━━━━━␛[0m␛[37m━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6344 - loss: 0.6417␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m193/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6364 - loss: 0.6394␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6367 - loss: 0.6391
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 17ms/step - accuracy: 0.7000 - loss: 0.6147␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 44/200␛[0m ␛[32m━━━━␛[0m␛[37m━━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6500 - loss: 0.6293 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 92/200␛[0m ␛[32m━━━━━━━━━␛[0m␛[37m━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6532 - loss: 0.6281␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m137/200␛[0m ␛[32m━━━━━━━━━━━━━␛[0m␛[37m━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6533 - loss: 0.6272␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m187/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6522 - loss: 0.6274␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6519 - loss: 0.6276
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6400 - loss: 0.6676␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 901us/step - accuracy: 0.6517 - loss: 0.6319␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m105/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 970us/step - accuracy: 0.6555 - loss: 0.6280␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m158/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 967us/step - accuracy: 0.6545 - loss: 0.6270␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6542 - loss: 0.6265
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 17ms/step - accuracy: 0.7000 - loss: 0.5482␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 48/200␛[0m ␛[32m━━━━␛[0m␛[37m━━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6736 - loss: 0.6025 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 95/200␛[0m ␛[32m━━━━━━━━━␛[0m␛[37m━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6667 - loss: 0.6084␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m141/200␛[0m ␛[32m━━━━━━━━━━━━━━␛[0m␛[37m━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6628 - loss: 0.6118␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m187/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6605 - loss: 0.6133␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6602 - loss: 0.6135
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 17ms/step - accuracy: 0.7000 - loss: 0.6101␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 50/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6631 - loss: 0.6111 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m104/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 980us/step - accuracy: 0.6626 - loss: 0.6113␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m152/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6638 - loss: 0.6108 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m197/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6645 - loss: 0.6106␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6645 - loss: 0.6106
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.6600 - loss: 0.6427␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 932us/step - accuracy: 0.6621 - loss: 0.6189␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m114/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 889us/step - accuracy: 0.6651 - loss: 0.6124␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m171/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 889us/step - accuracy: 0.6668 - loss: 0.6102␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 947us/step - accuracy: 0.6671 - loss: 0.6099
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7400 - loss: 0.5407␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 940us/step - accuracy: 0.6809 - loss: 0.5938␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m112/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 912us/step - accuracy: 0.6802 - loss: 0.5951␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m169/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 904us/step - accuracy: 0.6777 - loss: 0.5970␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 953us/step - accuracy: 0.6766 - loss: 0.5977
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.5800 - loss: 0.7104␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 853us/step - accuracy: 0.6735 - loss: 0.6098␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m113/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 900us/step - accuracy: 0.6737 - loss: 0.6060␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m170/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 895us/step - accuracy: 0.6740 - loss: 0.6042␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 932us/step - accuracy: 0.6741 - loss: 0.6039
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_5 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_6 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_7 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_8 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_9 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m1:54␛[0m 575ms/step - accuracy: 0.5400 - loss: 0.7104␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 50/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5450 - loss: 0.6917 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 99/200␛[0m ␛[32m━━━━━━━━━␛[0m␛[37m━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5558 - loss: 0.6857␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m152/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 998us/step - accuracy: 0.5646 - loss: 0.6810␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 1ms/step - accuracy: 0.5708 - loss: 0.6777
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6800 - loss: 0.6223␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 56/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 922us/step - accuracy: 0.6306 - loss: 0.6462␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m109/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 941us/step - accuracy: 0.6289 - loss: 0.6467␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m160/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 957us/step - accuracy: 0.6298 - loss: 0.6457␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6302 - loss: 0.6447
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 17ms/step - accuracy: 0.6800 - loss: 0.6357␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 49/200␛[0m ␛[32m━━━━␛[0m␛[37m━━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6683 - loss: 0.6193 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m101/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6604 - loss: 0.6229␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m152/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 996us/step - accuracy: 0.6581 - loss: 0.6237␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m199/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6568 - loss: 0.6242 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6568 - loss: 0.6242
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 15ms/step - accuracy: 0.5800 - loss: 0.7215␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 942us/step - accuracy: 0.6417 - loss: 0.6331␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m110/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 931us/step - accuracy: 0.6434 - loss: 0.6296␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m167/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 917us/step - accuracy: 0.6448 - loss: 0.6282␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 956us/step - accuracy: 0.6457 - loss: 0.6275
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6400 - loss: 0.6194␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 836us/step - accuracy: 0.6556 - loss: 0.6310␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m114/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6555 - loss: 0.6264␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m166/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 914us/step - accuracy: 0.6563 - loss: 0.6238␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 981us/step - accuracy: 0.6567 - loss: 0.6224
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 16ms/step - accuracy: 0.7000 - loss: 0.5539␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 883us/step - accuracy: 0.6667 - loss: 0.6140␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m109/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 931us/step - accuracy: 0.6650 - loss: 0.6122␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m158/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 965us/step - accuracy: 0.6641 - loss: 0.6116␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6638 - loss: 0.6112
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6200 - loss: 0.6352␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 908us/step - accuracy: 0.6708 - loss: 0.6014␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m112/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 910us/step - accuracy: 0.6730 - loss: 0.6013␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m166/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 916us/step - accuracy: 0.6743 - loss: 0.6008␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 965us/step - accuracy: 0.6740 - loss: 0.6010
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7600 - loss: 0.5515␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 908us/step - accuracy: 0.6828 - loss: 0.5976␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m116/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 878us/step - accuracy: 0.6768 - loss: 0.5994␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m167/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 911us/step - accuracy: 0.6751 - loss: 0.5996␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 963us/step - accuracy: 0.6749 - loss: 0.5992
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7400 - loss: 0.5359␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 53/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 967us/step - accuracy: 0.6947 - loss: 0.5782␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 99/200␛[0m ␛[32m━━━━━━━━━␛[0m␛[37m━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6939 - loss: 0.5827 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m151/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6919 - loss: 0.5850␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6899 - loss: 0.5864
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.5800 - loss: 0.6520␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 59/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 875us/step - accuracy: 0.6750 - loss: 0.5959␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m115/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 884us/step - accuracy: 0.6753 - loss: 0.5951␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m173/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.6765 - loss: 0.5938␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 935us/step - accuracy: 0.6770 - loss: 0.5936
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_10 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_11 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_12 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_13 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_14 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2:06␛[0m 638ms/step - accuracy: 0.5400 - loss: 0.6932␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 51/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5289 - loss: 0.6886 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m103/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 991us/step - accuracy: 0.5429 - loss: 0.6836␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m147/200␛[0m ␛[32m━━━━━━━━━━━━━━␛[0m␛[37m━━━━━━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5526 - loss: 0.6797 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m195/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.5603 - loss: 0.6762␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 1ms/step - accuracy: 0.5612 - loss: 0.6759
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6000 - loss: 0.6233␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 53/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 978us/step - accuracy: 0.6298 - loss: 0.6431␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m105/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 976us/step - accuracy: 0.6324 - loss: 0.6412␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m155/200␛[0m ␛[32m━━━━━━━━━━━━━━━␛[0m␛[37m━━━━━␛[0m ␛[1m0s␛[0m 987us/step - accuracy: 0.6316 - loss: 0.6413␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6320 - loss: 0.6410
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6200 - loss: 0.6348␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 941us/step - accuracy: 0.6228 - loss: 0.6443␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m108/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 948us/step - accuracy: 0.6283 - loss: 0.6403␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m164/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 933us/step - accuracy: 0.6314 - loss: 0.6387␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 978us/step - accuracy: 0.6331 - loss: 0.6374
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6400 - loss: 0.6008␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 886us/step - accuracy: 0.6608 - loss: 0.6092␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m115/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 883us/step - accuracy: 0.6589 - loss: 0.6116␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m173/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 877us/step - accuracy: 0.6573 - loss: 0.6146␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 932us/step - accuracy: 0.6568 - loss: 0.6156
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6800 - loss: 0.6006␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6609 - loss: 0.6092␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m112/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 911us/step - accuracy: 0.6588 - loss: 0.6135␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m170/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 898us/step - accuracy: 0.6584 - loss: 0.6145␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 951us/step - accuracy: 0.6587 - loss: 0.6144
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.8000 - loss: 0.5019␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6743 - loss: 0.6200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m114/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 895us/step - accuracy: 0.6645 - loss: 0.6218␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m168/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 907us/step - accuracy: 0.6629 - loss: 0.6207␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 997us/step - accuracy: 0.6621 - loss: 0.6203
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.6400 - loss: 0.6203␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 53/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 978us/step - accuracy: 0.6611 - loss: 0.6149␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m106/200␛[0m ␛[32m━━━━━━━━━━␛[0m␛[37m━━━━━━━━━━␛[0m ␛[1m0s␛[0m 967us/step - accuracy: 0.6606 - loss: 0.6146␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m161/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 951us/step - accuracy: 0.6637 - loss: 0.6117␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 1ms/step - accuracy: 0.6656 - loss: 0.6103
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7200 - loss: 0.6209␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 56/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 916us/step - accuracy: 0.6809 - loss: 0.6062␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m111/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 917us/step - accuracy: 0.6778 - loss: 0.6049␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m162/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 943us/step - accuracy: 0.6740 - loss: 0.6064␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 996us/step - accuracy: 0.6723 - loss: 0.6071
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7600 - loss: 0.5054␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 860us/step - accuracy: 0.6944 - loss: 0.5829␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m114/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 898us/step - accuracy: 0.6872 - loss: 0.5878␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m169/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 904us/step - accuracy: 0.6822 - loss: 0.5919␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 951us/step - accuracy: 0.6807 - loss: 0.5933
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6600 - loss: 0.5740␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 897us/step - accuracy: 0.6887 - loss: 0.5819␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m116/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 874us/step - accuracy: 0.6868 - loss: 0.5845␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m176/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 863us/step - accuracy: 0.6843 - loss: 0.5876␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 916us/step - accuracy: 0.6832 - loss: 0.5889
TF/Keras Version: 2.20.0
Author
Lorenzo Moneta

Definition in file TMVA_SOFIE_Models.py.