Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
TMVA::DataSet Class Reference

Class that contains all the data information.

Definition at line 58 of file DataSet.h.

Public Member Functions

 DataSet ()
 constructor
 
 DataSet (const DataSetInfo &)
 constructor
 
virtual ~DataSet ()
 destructor
 
void AddEvent (Event *, Types::ETreeType)
 add event to event list after which the event is owned by the dataset
 
void ClearNClassEvents (Int_t type)
 
void CreateSampling () const
 create an event sampling (random or importance sampling)
 
void DeleteAllResults (Types::ETreeType type, Types::EAnalysisType analysistype)
 Deletes all results currently in the dataset.
 
void DeleteResults (const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
 delete the results stored for this particular Method instance.
 
void DivideTrainingSet (UInt_t blockNum)
 divide training set
 
void EventResult (Bool_t successful, Long64_t evtNumber=-1)
 increase the importance sampling weight of the event when not successful and decrease it when successful
 
Types::ETreeType GetCurrentType () const
 
const EventGetEvent () const
 returns event without transformations
 
const EventGetEvent (Long64_t ievt) const
 
const EventGetEvent (Long64_t ievt, Types::ETreeType type) const
 
const std::vector< Event * > & GetEventCollection (Types::ETreeType type=Types::kMaxTreeType) const
 
const TTreeGetEventCollectionAsTree ()
 
Long64_t GetNClassEvents (Int_t type, UInt_t classNumber)
 
Long64_t GetNEvents (Types::ETreeType type=Types::kMaxTreeType) const
 
Long64_t GetNEvtBkgdTest ()
 return number of background test events in dataset
 
Long64_t GetNEvtBkgdTrain ()
 return number of background training events in dataset
 
Long64_t GetNEvtSigTest ()
 return number of signal test events in dataset
 
Long64_t GetNEvtSigTrain ()
 return number of signal training events in dataset
 
UInt_t GetNSpectators () const
 access the number of targets through the datasetinfo
 
UInt_t GetNTargets () const
 access the number of targets through the datasetinfo
 
Long64_t GetNTestEvents () const
 
Long64_t GetNTrainingEvents () const
 
UInt_t GetNVariables () const
 access the number of variables through the datasetinfo
 
ResultsGetResults (const TString &, Types::ETreeType type, Types::EAnalysisType analysistype)
 
const EventGetTestEvent (Long64_t ievt) const
 
const EventGetTrainingEvent (Long64_t ievt) const
 
TTreeGetTree (Types::ETreeType type)
 create the test/trainings tree with all the variables, the weights, the classes, the targets, the spectators, the MVA outputs
 
Bool_t HasNegativeEventWeights () const
 
void IncrementNClassEvents (Int_t type, UInt_t classNumber)
 
void InitSampling (Float_t fraction, Float_t weight, UInt_t seed=0)
 initialize random or importance sampling
 
virtual TClassIsA () const
 
void MoveTrainingBlock (Int_t blockInd, Types::ETreeType dest, Bool_t applyChanges=kTRUE)
 move training block
 
void SetCurrentEvent (Long64_t ievt) const
 
void SetCurrentType (Types::ETreeType type) const
 
void SetEventCollection (std::vector< Event * > *, Types::ETreeType, Bool_t deleteEvents=true)
 Sets the event collection (by DataSetFactory)
 
void SetVerbose (Bool_t)
 
virtual void Streamer (TBuffer &)
 Stream an object of class TObject.
 
void StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b)
 
UInt_t TreeIndex (Types::ETreeType type) const
 
- Public Member Functions inherited from TNamed
 TNamed ()
 
 TNamed (const char *name, const char *title)
 
 TNamed (const TNamed &named)
 TNamed copy ctor.
 
 TNamed (const TString &name, const TString &title)
 
virtual ~TNamed ()
 TNamed destructor.
 
void Clear (Option_t *option="") override
 Set name and title to empty strings ("").
 
TObjectClone (const char *newname="") const override
 Make a clone of an object using the Streamer facility.
 
Int_t Compare (const TObject *obj) const override
 Compare two TNamed objects.
 
void Copy (TObject &named) const override
 Copy this to obj.
 
virtual void FillBuffer (char *&buffer)
 Encode TNamed into output buffer.
 
const char * GetName () const override
 Returns name of object.
 
const char * GetTitle () const override
 Returns title of object.
 
ULong_t Hash () const override
 Return hash value for this object.
 
TClassIsA () const override
 
Bool_t IsSortable () const override
 
void ls (Option_t *option="") const override
 List TNamed name and title.
 
TNamedoperator= (const TNamed &rhs)
 TNamed assignment operator.
 
void Print (Option_t *option="") const override
 Print TNamed name and title.
 
virtual void SetName (const char *name)
 Set the name of the TNamed.
 
virtual void SetNameTitle (const char *name, const char *title)
 Set all the TNamed parameters (name and title).
 
virtual void SetTitle (const char *title="")
 Set the title of the TNamed.
 
virtual Int_t Sizeof () const
 Return size of the TNamed part of the TObject.
 
void Streamer (TBuffer &) override
 Stream an object of class TObject.
 
void StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b)
 
- Public Member Functions inherited from TObject
 TObject ()
 TObject constructor.
 
 TObject (const TObject &object)
 TObject copy ctor.
 
virtual ~TObject ()
 TObject destructor.
 
void AbstractMethod (const char *method) const
 Use this method to implement an "abstract" method that you don't want to leave purely abstract.
 
virtual void AppendPad (Option_t *option="")
 Append graphics object to current pad.
 
virtual void Browse (TBrowser *b)
 Browse object. May be overridden for another default action.
 
ULong_t CheckedHash ()
 Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object.
 
virtual const char * ClassName () const
 Returns name of class to which the object belongs.
 
virtual void Delete (Option_t *option="")
 Delete this object.
 
virtual Int_t DistancetoPrimitive (Int_t px, Int_t py)
 Computes distance from point (px,py) to the object.
 
virtual void Draw (Option_t *option="")
 Default Draw method for all objects.
 
virtual void DrawClass () const
 Draw class inheritance tree of the class to which this object belongs.
 
virtual TObjectDrawClone (Option_t *option="") const
 Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1).
 
virtual void Dump () const
 Dump contents of object on stdout.
 
virtual void Error (const char *method, const char *msgfmt,...) const
 Issue error message.
 
virtual void Execute (const char *method, const char *params, Int_t *error=nullptr)
 Execute method on this object with the given parameter string, e.g.
 
virtual void Execute (TMethod *method, TObjArray *params, Int_t *error=nullptr)
 Execute method on this object with parameters stored in the TObjArray.
 
virtual void ExecuteEvent (Int_t event, Int_t px, Int_t py)
 Execute action corresponding to an event at (px,py).
 
virtual void Fatal (const char *method, const char *msgfmt,...) const
 Issue fatal error message.
 
virtual TObjectFindObject (const char *name) const
 Must be redefined in derived classes.
 
virtual TObjectFindObject (const TObject *obj) const
 Must be redefined in derived classes.
 
virtual Option_tGetDrawOption () const
 Get option used by the graphics system to draw this object.
 
virtual const char * GetIconName () const
 Returns mime type name of object.
 
virtual char * GetObjectInfo (Int_t px, Int_t py) const
 Returns string containing info about the object at position (px,py).
 
virtual Option_tGetOption () const
 
virtual UInt_t GetUniqueID () const
 Return the unique object id.
 
virtual Bool_t HandleTimer (TTimer *timer)
 Execute action in response of a timer timing out.
 
Bool_t HasInconsistentHash () const
 Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e.
 
virtual void Info (const char *method, const char *msgfmt,...) const
 Issue info message.
 
virtual Bool_t InheritsFrom (const char *classname) const
 Returns kTRUE if object inherits from class "classname".
 
virtual Bool_t InheritsFrom (const TClass *cl) const
 Returns kTRUE if object inherits from TClass cl.
 
virtual void Inspect () const
 Dump contents of this object in a graphics canvas.
 
void InvertBit (UInt_t f)
 
Bool_t IsDestructed () const
 IsDestructed.
 
virtual Bool_t IsEqual (const TObject *obj) const
 Default equal comparison (objects are equal if they have the same address in memory).
 
virtual Bool_t IsFolder () const
 Returns kTRUE in case object contains browsable objects (like containers or lists of other objects).
 
R__ALWAYS_INLINE Bool_t IsOnHeap () const
 
R__ALWAYS_INLINE Bool_t IsZombie () const
 
void MayNotUse (const char *method) const
 Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary).
 
virtual Bool_t Notify ()
 This method must be overridden to handle object notification (the base implementation is no-op).
 
void Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const
 Use this method to declare a method obsolete.
 
void operator delete (void *ptr)
 Operator delete.
 
void operator delete (void *ptr, void *vp)
 Only called by placement new when throwing an exception.
 
void operator delete[] (void *ptr)
 Operator delete [].
 
void operator delete[] (void *ptr, void *vp)
 Only called by placement new[] when throwing an exception.
 
void * operator new (size_t sz)
 
void * operator new (size_t sz, void *vp)
 
void * operator new[] (size_t sz)
 
void * operator new[] (size_t sz, void *vp)
 
TObjectoperator= (const TObject &rhs)
 TObject assignment operator.
 
virtual void Paint (Option_t *option="")
 This method must be overridden if a class wants to paint itself.
 
virtual void Pop ()
 Pop on object drawn in a pad to the top of the display list.
 
virtual Int_t Read (const char *name)
 Read contents of object with specified name from the current directory.
 
virtual void RecursiveRemove (TObject *obj)
 Recursively remove this object from a list.
 
void ResetBit (UInt_t f)
 
virtual void SaveAs (const char *filename="", Option_t *option="") const
 Save this object in the file specified by filename.
 
virtual void SavePrimitive (std::ostream &out, Option_t *option="")
 Save a primitive as a C++ statement(s) on output stream "out".
 
void SetBit (UInt_t f)
 
void SetBit (UInt_t f, Bool_t set)
 Set or unset the user status bits as specified in f.
 
virtual void SetDrawOption (Option_t *option="")
 Set drawing option for object.
 
virtual void SetUniqueID (UInt_t uid)
 Set the unique object id.
 
void StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b)
 
virtual void SysError (const char *method, const char *msgfmt,...) const
 Issue system error message.
 
R__ALWAYS_INLINE Bool_t TestBit (UInt_t f) const
 
Int_t TestBits (UInt_t f) const
 
virtual void UseCurrentStyle ()
 Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked.
 
virtual void Warning (const char *method, const char *msgfmt,...) const
 Issue warning message.
 
virtual Int_t Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0)
 Write this object to the current directory.
 
virtual Int_t Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) const
 Write this object to the current directory.
 

Static Public Member Functions

static TClassClass ()
 
static const char * Class_Name ()
 
static constexpr Version_t Class_Version ()
 
static const char * DeclFileName ()
 
- Static Public Member Functions inherited from TNamed
static TClassClass ()
 
static const char * Class_Name ()
 
static constexpr Version_t Class_Version ()
 
static const char * DeclFileName ()
 
- Static Public Member Functions inherited from TObject
static TClassClass ()
 
static const char * Class_Name ()
 
static constexpr Version_t Class_Version ()
 
static const char * DeclFileName ()
 
static Longptr_t GetDtorOnly ()
 Return destructor only flag.
 
static Bool_t GetObjectStat ()
 Get status of object stat flag.
 
static void SetDtorOnly (void *obj)
 Set destructor only flag.
 
static void SetObjectStat (Bool_t stat)
 Turn on/off tracking of objects in the TObjectTable.
 

Private Member Functions

void ApplyTrainingBlockDivision ()
 
void ApplyTrainingSetDivision ()
 apply division of data set
 
void DestroyCollection (Types::ETreeType type, Bool_t deleteEvents)
 destroys the event collection (events + vector)
 
MsgLoggerLog () const
 

Private Attributes

std::vector< Char_tfBlockBelongToTraining
 when dividing the dataset to blocks, sets whether the certain block is in the Training set or else in the validation set boolean are stored, taken std::vector<Char_t> for performance reasons (instead of std::vector<Bool_t>)
 
std::vector< std::vector< Long64_t > > fClassEvents
 number of events of class 0,1,2,... in training[0] and testing[1] (+validation, trainingoriginal)
 
Long64_t fCurrentEventIdx
 
UInt_t fCurrentTreeIdx
 
const DataSetInfofdsi
 -> datasetinfo that created this dataset
 
std::vector< std::vector< Event * > > fEventCollection
 list of events for training/testing/...
 
Bool_t fHasNegativeEventWeights
 true if at least one signal or bkg event has negative weight
 
MsgLoggerfLogger
 ! message logger
 
std::vector< std::map< TString, Results * > > fResults
 ! [train/test/...][method-identifier]
 
std::vector< Char_tfSampling
 random or importance sampling (not all events are taken) !! Bool_t are stored ( no std::vector<bool> taken for speed (performance) issues )
 
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingEventList
 weights and indices for sampling
 
std::vector< Int_tfSamplingNEvents
 number of events which should be sampled
 
TRandom3fSamplingRandom
 -> random generator for sampling
 
std::vector< std::vector< std::pair< Float_t, Long64_t > > > fSamplingSelected
 selected events
 
std::vector< Float_tfSamplingWeight
 weight change factor [weight is indicating if sampling is random (1.0) or importance (<1.0)]
 
Long64_t fTrainingBlockSize
 block size into which the training dataset is divided
 

Additional Inherited Members

- Public Types inherited from TObject
enum  {
  kIsOnHeap = 0x01000000 , kNotDeleted = 0x02000000 , kZombie = 0x04000000 , kInconsistent = 0x08000000 ,
  kBitMask = 0x00ffffff
}
 
enum  { kSingleKey = (1ULL << ( 0 )) , kOverwrite = (1ULL << ( 1 )) , kWriteDelete = (1ULL << ( 2 )) }
 
enum  EDeprecatedStatusBits { kObjInCanvas = (1ULL << ( 3 )) }
 
enum  EStatusBits {
  kCanDelete = (1ULL << ( 0 )) , kMustCleanup = (1ULL << ( 3 )) , kIsReferenced = (1ULL << ( 4 )) , kHasUUID = (1ULL << ( 5 )) ,
  kCannotPick = (1ULL << ( 6 )) , kNoContextMenu = (1ULL << ( 8 )) , kInvalidObject = (1ULL << ( 13 ))
}
 
- Protected Types inherited from TObject
enum  { kOnlyPrepStep = (1ULL << ( 3 )) }
 
- Protected Member Functions inherited from TObject
virtual void DoError (int level, const char *location, const char *fmt, va_list va) const
 Interface to ErrorHandler (protected).
 
void MakeZombie ()
 
- Protected Attributes inherited from TNamed
TString fName
 
TString fTitle
 

#include <TMVA/DataSet.h>

Inheritance diagram for TMVA::DataSet:
[legend]

Constructor & Destructor Documentation

◆ DataSet() [1/2]

TMVA::DataSet::DataSet ( )

constructor

Definition at line 91 of file DataSet.cxx.

◆ DataSet() [2/2]

TMVA::DataSet::DataSet ( const DataSetInfo dsi)

constructor

Definition at line 58 of file DataSet.cxx.

◆ ~DataSet()

TMVA::DataSet::~DataSet ( )
virtual

destructor

Definition at line 123 of file DataSet.cxx.

Member Function Documentation

◆ AddEvent()

void TMVA::DataSet::AddEvent ( Event ev,
Types::ETreeType  type 
)

add event to event list after which the event is owned by the dataset

Definition at line 241 of file DataSet.cxx.

◆ ApplyTrainingBlockDivision()

void TMVA::DataSet::ApplyTrainingBlockDivision ( )
private

◆ ApplyTrainingSetDivision()

void TMVA::DataSet::ApplyTrainingSetDivision ( )
private

apply division of data set

Definition at line 395 of file DataSet.cxx.

◆ Class()

static TClass * TMVA::DataSet::Class ( )
static
Returns
TClass describing this class

◆ Class_Name()

static const char * TMVA::DataSet::Class_Name ( )
static
Returns
Name of this class

◆ Class_Version()

static constexpr Version_t TMVA::DataSet::Class_Version ( )
inlinestaticconstexpr
Returns
Version of this class

Definition at line 175 of file DataSet.h.

◆ ClearNClassEvents()

void TMVA::DataSet::ClearNClassEvents ( Int_t  type)

Definition at line 160 of file DataSet.cxx.

◆ CreateSampling()

void TMVA::DataSet::CreateSampling ( ) const

create an event sampling (random or importance sampling)

Definition at line 508 of file DataSet.cxx.

◆ DeclFileName()

static const char * TMVA::DataSet::DeclFileName ( )
inlinestatic
Returns
Name of the file containing the class declaration

Definition at line 175 of file DataSet.h.

◆ DeleteAllResults()

void TMVA::DataSet::DeleteAllResults ( Types::ETreeType  type,
Types::EAnalysisType  analysistype 
)

Deletes all results currently in the dataset.

Definition at line 343 of file DataSet.cxx.

◆ DeleteResults()

void TMVA::DataSet::DeleteResults ( const TString resultsName,
Types::ETreeType  type,
Types::EAnalysisType  analysistype 
)

delete the results stored for this particular Method instance.

(here apparently called resultsName instead of MethodTitle Tree type (Training, testing etc..) Analysis Type (Classification, Multiclass, Regression etc..)

Definition at line 316 of file DataSet.cxx.

◆ DestroyCollection()

void TMVA::DataSet::DestroyCollection ( Types::ETreeType  type,
Bool_t  deleteEvents 
)
private

destroys the event collection (events + vector)

Definition at line 189 of file DataSet.cxx.

◆ DivideTrainingSet()

void TMVA::DataSet::DivideTrainingSet ( UInt_t  blockNum)

divide training set

Definition at line 371 of file DataSet.cxx.

◆ EventResult()

void TMVA::DataSet::EventResult ( Bool_t  successful,
Long64_t  evtNumber = -1 
)

increase the importance sampling weight of the event when not successful and decrease it when successful

Definition at line 572 of file DataSet.cxx.

◆ GetCurrentType()

TMVA::Types::ETreeType TMVA::DataSet::GetCurrentType ( ) const
inline

Definition at line 194 of file DataSet.h.

◆ GetEvent() [1/3]

const TMVA::Event * TMVA::DataSet::GetEvent ( ) const

returns event without transformations

Definition at line 202 of file DataSet.cxx.

◆ GetEvent() [2/3]

const Event * TMVA::DataSet::GetEvent ( Long64_t  ievt) const
inline

Definition at line 73 of file DataSet.h.

◆ GetEvent() [3/3]

const Event * TMVA::DataSet::GetEvent ( Long64_t  ievt,
Types::ETreeType  type 
) const
inline

Definition at line 76 of file DataSet.h.

◆ GetEventCollection()

const std::vector< TMVA::Event * > & TMVA::DataSet::GetEventCollection ( Types::ETreeType  type = Types::kMaxTreeType) const
inline

Definition at line 216 of file DataSet.h.

◆ GetEventCollectionAsTree()

const TTree * TMVA::DataSet::GetEventCollectionAsTree ( )

◆ GetNClassEvents()

Long64_t TMVA::DataSet::GetNClassEvents ( Int_t  type,
UInt_t  classNumber 
)

Definition at line 168 of file DataSet.cxx.

◆ GetNEvents()

Long64_t TMVA::DataSet::GetNEvents ( Types::ETreeType  type = Types::kMaxTreeType) const
inline

Definition at line 206 of file DataSet.h.

◆ GetNEvtBkgdTest()

Long64_t TMVA::DataSet::GetNEvtBkgdTest ( )

return number of background test events in dataset

Definition at line 435 of file DataSet.cxx.

◆ GetNEvtBkgdTrain()

Long64_t TMVA::DataSet::GetNEvtBkgdTrain ( )

return number of background training events in dataset

Definition at line 451 of file DataSet.cxx.

◆ GetNEvtSigTest()

Long64_t TMVA::DataSet::GetNEvtSigTest ( )

return number of signal test events in dataset

Definition at line 427 of file DataSet.cxx.

◆ GetNEvtSigTrain()

Long64_t TMVA::DataSet::GetNEvtSigTrain ( )

return number of signal training events in dataset

Definition at line 443 of file DataSet.cxx.

◆ GetNSpectators()

UInt_t TMVA::DataSet::GetNSpectators ( ) const

access the number of targets through the datasetinfo

Definition at line 232 of file DataSet.cxx.

◆ GetNTargets()

UInt_t TMVA::DataSet::GetNTargets ( ) const

access the number of targets through the datasetinfo

Definition at line 224 of file DataSet.cxx.

◆ GetNTestEvents()

Long64_t TMVA::DataSet::GetNTestEvents ( ) const
inline

Definition at line 69 of file DataSet.h.

◆ GetNTrainingEvents()

Long64_t TMVA::DataSet::GetNTrainingEvents ( ) const
inline

Definition at line 68 of file DataSet.h.

◆ GetNVariables()

UInt_t TMVA::DataSet::GetNVariables ( ) const

access the number of variables through the datasetinfo

Definition at line 216 of file DataSet.cxx.

◆ GetResults()

TMVA::Results * TMVA::DataSet::GetResults ( const TString resultsName,
Types::ETreeType  type,
Types::EAnalysisType  analysistype 
)

Definition at line 265 of file DataSet.cxx.

◆ GetTestEvent()

const Event * TMVA::DataSet::GetTestEvent ( Long64_t  ievt) const
inline

Definition at line 75 of file DataSet.h.

◆ GetTrainingEvent()

const Event * TMVA::DataSet::GetTrainingEvent ( Long64_t  ievt) const
inline

Definition at line 74 of file DataSet.h.

◆ GetTree()

TTree * TMVA::DataSet::GetTree ( Types::ETreeType  type)

create the test/trainings tree with all the variables, the weights, the classes, the targets, the spectators, the MVA outputs

Definition at line 609 of file DataSet.cxx.

◆ HasNegativeEventWeights()

Bool_t TMVA::DataSet::HasNegativeEventWeights ( ) const
inline

Definition at line 101 of file DataSet.h.

◆ IncrementNClassEvents()

void TMVA::DataSet::IncrementNClassEvents ( Int_t  type,
UInt_t  classNumber 
)

Definition at line 151 of file DataSet.cxx.

◆ InitSampling()

void TMVA::DataSet::InitSampling ( Float_t  fraction,
Float_t  weight,
UInt_t  seed = 0 
)

initialize random or importance sampling

Definition at line 459 of file DataSet.cxx.

◆ IsA()

virtual TClass * TMVA::DataSet::IsA ( ) const
inlinevirtual
Returns
TClass describing current object

Reimplemented from TObject.

Definition at line 175 of file DataSet.h.

◆ Log()

MsgLogger & TMVA::DataSet::Log ( ) const
inlineprivate

Definition at line 164 of file DataSet.h.

◆ MoveTrainingBlock()

void TMVA::DataSet::MoveTrainingBlock ( Int_t  blockInd,
Types::ETreeType  dest,
Bool_t  applyChanges = kTRUE 
)

move training block

Definition at line 415 of file DataSet.cxx.

◆ SetCurrentEvent()

void TMVA::DataSet::SetCurrentEvent ( Long64_t  ievt) const
inline

Definition at line 88 of file DataSet.h.

◆ SetCurrentType()

void TMVA::DataSet::SetCurrentType ( Types::ETreeType  type) const
inline

Definition at line 89 of file DataSet.h.

◆ SetEventCollection()

void TMVA::DataSet::SetEventCollection ( std::vector< Event * > *  events,
Types::ETreeType  type,
Bool_t  deleteEvents = true 
)

Sets the event collection (by DataSetFactory)

Definition at line 250 of file DataSet.cxx.

◆ SetVerbose()

void TMVA::DataSet::SetVerbose ( Bool_t  )
inline

Definition at line 112 of file DataSet.h.

◆ Streamer()

virtual void TMVA::DataSet::Streamer ( TBuffer R__b)
virtual

Stream an object of class TObject.

Reimplemented from TObject.

◆ StreamerNVirtual()

void TMVA::DataSet::StreamerNVirtual ( TBuffer ClassDef_StreamerNVirtual_b)
inline

Definition at line 175 of file DataSet.h.

◆ TreeIndex()

UInt_t TMVA::DataSet::TreeIndex ( Types::ETreeType  type) const
inline

Definition at line 181 of file DataSet.h.

Member Data Documentation

◆ fBlockBelongToTraining

std::vector<Char_t> TMVA::DataSet::fBlockBelongToTraining
private

when dividing the dataset to blocks, sets whether the certain block is in the Training set or else in the validation set boolean are stored, taken std::vector<Char_t> for performance reasons (instead of std::vector<Bool_t>)

Definition at line 165 of file DataSet.h.

◆ fClassEvents

std::vector< std::vector<Long64_t> > TMVA::DataSet::fClassEvents
private

number of events of class 0,1,2,... in training[0] and testing[1] (+validation, trainingoriginal)

Definition at line 158 of file DataSet.h.

◆ fCurrentEventIdx

Long64_t TMVA::DataSet::fCurrentEventIdx
mutableprivate

Definition at line 146 of file DataSet.h.

◆ fCurrentTreeIdx

UInt_t TMVA::DataSet::fCurrentTreeIdx
mutableprivate

Definition at line 145 of file DataSet.h.

◆ fdsi

const DataSetInfo* TMVA::DataSet::fdsi
private

-> datasetinfo that created this dataset

Definition at line 139 of file DataSet.h.

◆ fEventCollection

std::vector< std::vector<Event*> > TMVA::DataSet::fEventCollection
private

list of events for training/testing/...

Definition at line 141 of file DataSet.h.

◆ fHasNegativeEventWeights

Bool_t TMVA::DataSet::fHasNegativeEventWeights
private

true if at least one signal or bkg event has negative weight

Definition at line 161 of file DataSet.h.

◆ fLogger

MsgLogger* TMVA::DataSet::fLogger
mutableprivate

! message logger

Definition at line 163 of file DataSet.h.

◆ fResults

std::vector< std::map< TString, Results* > > TMVA::DataSet::fResults
private

! [train/test/...][method-identifier]

Definition at line 143 of file DataSet.h.

◆ fSampling

std::vector<Char_t> TMVA::DataSet::fSampling
private

random or importance sampling (not all events are taken) !! Bool_t are stored ( no std::vector<bool> taken for speed (performance) issues )

Definition at line 149 of file DataSet.h.

◆ fSamplingEventList

std::vector< std::vector< std::pair< Float_t, Long64_t > > > TMVA::DataSet::fSamplingEventList
mutableprivate

weights and indices for sampling

Definition at line 152 of file DataSet.h.

◆ fSamplingNEvents

std::vector<Int_t> TMVA::DataSet::fSamplingNEvents
private

number of events which should be sampled

Definition at line 150 of file DataSet.h.

◆ fSamplingRandom

TRandom3* TMVA::DataSet::fSamplingRandom
private

-> random generator for sampling

Definition at line 154 of file DataSet.h.

◆ fSamplingSelected

std::vector< std::vector< std::pair< Float_t, Long64_t > > > TMVA::DataSet::fSamplingSelected
mutableprivate

selected events

Definition at line 153 of file DataSet.h.

◆ fSamplingWeight

std::vector<Float_t> TMVA::DataSet::fSamplingWeight
private

weight change factor [weight is indicating if sampling is random (1.0) or importance (<1.0)]

Definition at line 151 of file DataSet.h.

◆ fTrainingBlockSize

Long64_t TMVA::DataSet::fTrainingBlockSize
private

block size into which the training dataset is divided

Definition at line 169 of file DataSet.h.

Libraries for TMVA::DataSet:

The documentation for this class was generated from the following files: