Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
solveLinear.C File Reference

Detailed Description

View in nbviewer Open in SWAN
This macro shows several ways to perform a linear least-squares analysis .

To keep things simple we fit a straight line to 4 data points The first 4 methods use the linear algebra package to find x such that min \( (A x - b)^T (A x - b) \) where A and b are calculated with the data points and the functional expression :

  1. Normal equations: Expanding the expression \( (A x - b)^T (A x - b) \) and taking the derivative wrt x leads to the "Normal Equations": \( A^T A x = A^T b \) where \( A^T A \) is a positive definite matrix. Therefore, a Cholesky decomposition scheme can be used to calculate its inverse . This leads to the solution \( x = (A^T A)^-1 A^T b \) . All this is done in routine NormalEqn . We made it a bit more complicated by giving the data weights . Numerically this is not the best way to proceed because effectively the condition number of \( A^T A \) is twice as large as that of A, making inversion more difficult
  2. SVD One can show that solving \( A x = b \) for x with A of size \( (m x n) \) and \( m > n \) through a Singular Value Decomposition is equivalent to minimizing \( (A x - b)^T (A x - b) \) Numerically , this is the most stable method of all 5
  3. Pseudo Inverse Here we calculate the generalized matrix inverse ("pseudo inverse") by solving \( A X = Unit \) for matrix \( X \) through an SVD . The formal expression for is \( X = (A^T A)^-1 A^T \) . Then we multiply it by \( b \) . Numerically, not as good as 2 and not as fast . In general it is not a good idea to solve a set of linear equations with a matrix inversion .
  4. Pseudo Inverse , brute force The pseudo inverse is calculated brute force through a series of matrix manipulations . It shows nicely some operations in the matrix package, but is otherwise a big "no no" .
  5. Least-squares analysis with Minuit An objective function L is minimized by Minuit, where \( L = sum_i { (y - c_0 -c_1 * x / e)^2 } \) Minuit will calculate numerically the derivative of L wrt c_0 and c_1 . It has not been told that these derivatives are linear in the parameters c_0 and c_1 . For ill-conditioned linear problems it is better to use the fact it is a linear fit as in 2 .

Another interesting thing is the way we assign data to the vectors and matrices through adoption . This allows data assignment without physically moving bytes around .

USAGE

This macro can be executed via CLING or via ACLIC

Perform the fit y = c0 + c1 * x in four different ways
- 1. solve through Normal Equations
- 2. solve through SVD
- 3. solve with pseudo inverse
- 4. solve with pseudo inverse, calculated brute force
- 5. Minuit through TGraph
All solutions are the same within tolerance of 1e-12
#include "Riostream.h"
#include "TMatrixD.h"
#include "TVectorD.h"
#include "TGraphErrors.h"
#include "TDecompChol.h"
#include "TDecompSVD.h"
#include "TF1.h"
void solveLinear(Double_t eps = 1.e-12)
{
cout << "Perform the fit y = c0 + c1 * x in four different ways" << endl;
const Int_t nrVar = 2;
const Int_t nrPnts = 4;
Double_t ax[] = {0.0,1.0,2.0,3.0};
Double_t ay[] = {1.4,1.5,3.7,4.1};
Double_t ae[] = {0.5,0.2,1.0,0.5};
// Make the vectors 'Use" the data : they are not copied, the vector data
// pointer is just set appropriately
TMatrixDColumn(A,0) = 1.0;
TMatrixDColumn(A,1) = x;
cout << " - 1. solve through Normal Equations" << endl;
const TVectorD c_norm = NormalEqn(A,y,e);
cout << " - 2. solve through SVD" << endl;
// numerically preferred method
// first bring the weights in place
TMatrixD Aw = A;
for (Int_t irow = 0; irow < A.GetNrows(); irow++) {
yw(irow) /= e(irow);
}
Bool_t ok;
const TVectorD c_svd = svd.Solve(yw,ok);
cout << " - 3. solve with pseudo inverse" << endl;
const TMatrixD pseudo1 = svd.Invert();
cout << " - 4. solve with pseudo inverse, calculated brute force" << endl;
const TMatrixD pseudo2 = AtA.Invert() * Aw.T();
cout << " - 5. Minuit through TGraph" << endl;
TF1 *f1 = new TF1("f1","pol1",0,5);
gr->Fit("f1","Q");
// Check that all 4 answers are identical within a certain
// tolerance . The 1e-12 is somewhat arbitrary . It turns out that
// the TGraph fit is different by a few times 1e-13.
if (same)
cout << " All solutions are the same within tolerance of " << eps << endl;
else
cout << " Some solutions differ more than the allowed tolerance of " << eps << endl;
}
#define e(i)
Definition RSha256.hxx:103
bool Bool_t
Definition RtypesCore.h:63
int Int_t
Definition RtypesCore.h:45
double Double_t
Definition RtypesCore.h:59
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
TVectorD NormalEqn(const TMatrixD &A, const TVectorD &b)
Solve min {(A .
TMatrixTRow< Double_t > TMatrixDRow
TMatrixTColumn< Double_t > TMatrixDColumn
Single Value Decomposition class.
Definition TDecompSVD.h:24
1-Dim function class
Definition TF1.h:233
virtual Double_t GetParameter(Int_t ipar) const
Definition TF1.h:540
A TGraphErrors is a TGraph with error bars.
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Axis_t xmin=0, Axis_t xmax=0)
Fit this graph with function with name fname.
Definition TGraph.cxx:1256
TVectorT< Element > & Use(Int_t lwb, Int_t upb, Element *data)
Use the array data to fill the vector lwb..upb].
Definition TVectorT.cxx:349
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
TGraphErrors * gr
Definition legend1.C:25
TF1 * f1
Definition legend1.C:11
Bool_t VerifyVectorIdentity(const TVectorT< Element > &m1, const TVectorT< Element > &m2, Int_t verbose, Element maxDevAllow)
Verify that elements of the two vectors are equal within maxDevAllow .
Author
Eddy Offermann

Definition in file solveLinear.C.