Logo ROOT  
Reference Guide
TMatrixTSym< Element > Class Template Reference

template<class Element>
class TMatrixTSym< Element >

TMatrixTSym.

Template class of a symmetric matrix in the linear algebra package.

See The ROOT Matrix Linear Algebra classes. for the documentation of the linear algebra package.

Note that in this implementation both matrix element m[i][j] and m[j][i] are updated and stored in memory . However, when making the object persistent only the upper right triangle is stored .

Definition at line 34 of file TMatrixTSym.h.

Public Types

enum  { kWorkMax = 100 }
 
enum  EMatrixCreatorsOp1 {
  kZero, kUnit, kTransposed, kInverted,
  kAtA
}
 
enum  EMatrixCreatorsOp2 { kPlus, kMinus }
 

Public Member Functions

 TMatrixTSym ()
 
 TMatrixTSym (const TMatrixTSym< Element > &a, EMatrixCreatorsOp2 op, const TMatrixTSym< Element > &b)
 
 TMatrixTSym (const TMatrixTSym< Element > &another)
 
template<class Element2 >
 TMatrixTSym (const TMatrixTSym< Element2 > &another)
 
 TMatrixTSym (const TMatrixTSymLazy< Element > &lazy_constructor)
 
 TMatrixTSym (EMatrixCreatorsOp1 op, const TMatrixT< Element > &prototype)
 
 TMatrixTSym (EMatrixCreatorsOp1 op, const TMatrixTSym< Element > &prototype)
 Create a matrix applying a specific operation to the prototype. More...
 
 TMatrixTSym (Int_t nrows)
 
 TMatrixTSym (Int_t nrows, const Element *data, Option_t *option="")
 option= More...
 
 TMatrixTSym (Int_t row_lwb, Int_t row_upb)
 
 TMatrixTSym (Int_t row_lwb, Int_t row_upb, const Element *data, Option_t *option="")
 array elements are copied More...
 
virtual ~TMatrixTSym ()
 
TMatrixTBase< Element > & Apply (const TElementActionT< Element > &action)
 
TMatrixTBase< Element > & Apply (const TElementPosActionT< Element > &action)
 Apply action to each element of the matrix. More...
 
TClassClass ()
 
virtual void Clear (Option_t *="")
 
virtual Double_t Determinant () const
 
virtual void Determinant (Double_t &d1, Double_t &d2) const
 
const TMatrixT< Element > EigenVectors (TVectorT< Element > &eigenValues) const
 Return a matrix containing the eigen-vectors ordered by descending eigen-values. More...
 
virtual Int_tGetColIndexArray ()
 
virtual const Int_tGetColIndexArray () const
 
virtual Element * GetMatrixArray ()
 
virtual const Element * GetMatrixArray () const
 
virtual Int_tGetRowIndexArray ()
 
virtual const Int_tGetRowIndexArray () const
 
TMatrixTSym< Element > GetSub (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t *option="S") const
 
virtual TMatrixTBase< Element > & GetSub (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixTBase< Element > &target, Option_t *option="S") const
 Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the returned matrix depends on the argument option: More...
 
TMatrixTSym< Element > & GetSub (Int_t row_lwb, Int_t row_upb, TMatrixTSym< Element > &target, Option_t *option="S") const
 Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the returned matrix depends on the argument option: More...
 
TMatrixTSym< Element > & Invert (Double_t *det=0)
 Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of Bunch-Kaufman Bunch-Kaufman guarantees a symmetric inverted matrix but is slower than LU . More...
 
TMatrixTSym< Element > & InvertFast (Double_t *det=0)
 Invert the matrix and calculate its determinant. More...
 
virtual Bool_t IsSymmetric () const
 
void Minus (const TMatrixTSym< Element > &a, const TMatrixTSym< Element > &b)
 Symmetric matrix summation. Create a matrix C such that C = A + B. More...
 
void Mult (const TMatrixTSym< Element > &a)
 
Element & operator() (Int_t rown, Int_t coln)
 
Element operator() (Int_t rown, Int_t coln) const
 
TMatrixTSym< Element > & operator*= (Element val)
 Multiply every element of the matrix with val. More...
 
TMatrixTSymoperator+= (const TMatrixTSym &source)
 Add the source matrix. More...
 
TMatrixTSym< Element > & operator+= (Element val)
 Add val to every element of the matrix. More...
 
TMatrixTSymoperator-= (const TMatrixTSym &source)
 Subtract the source matrix. More...
 
TMatrixTSym< Element > & operator-= (Element val)
 Subtract val from every element of the matrix. More...
 
TMatrixTSym< Element > & operator= (const TMatrixTSym< Element > &source)
 
template<class Element2 >
TMatrixTSym< Element > & operator= (const TMatrixTSym< Element2 > &source)
 
TMatrixTSym< Element > & operator= (const TMatrixTSymLazy< Element > &source)
 
TMatrixTSym< Element > & operator= (Element val)
 Assign val to every element of the matrix. More...
 
TMatrixTRow< Element > operator[] (Int_t rown)
 
const TMatrixTRow_const< Element > operator[] (Int_t rown) const
 
void Plus (const TMatrixTSym< Element > &a, const TMatrixTSym< Element > &b)
 Symmetric matrix summation. Create a matrix C such that C = A + B. More...
 
virtual TMatrixTBase< Element > & Randomize (Element alpha, Element beta, Double_t &seed)
 randomize matrix element values but keep matrix symmetric More...
 
virtual TMatrixTSym< Element > & RandomizePD (Element alpha, Element beta, Double_t &seed)
 randomize matrix element values but keep matrix symmetric positive definite More...
 
TMatrixTSym< Element > & Rank1Update (const TVectorT< Element > &v, Element alpha=1.0)
 Perform a rank 1 operation on the matrix: A += alpha * v * v^T. More...
 
TMatrixTBase< Element > & ResizeTo (const TMatrixTSym< Element > &m)
 
virtual TMatrixTBase< Element > & ResizeTo (Int_t nrows, Int_t ncols, Int_t=-1)
 Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted. More...
 
virtual TMatrixTBase< Element > & ResizeTo (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t=-1)
 Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted. More...
 
virtual TMatrixTBase< Element > & SetColIndexArray (Int_t *)
 
virtual TMatrixTBase< Element > & SetMatrixArray (const Element *data, Option_t *option="")
 
virtual TMatrixTBase< Element > & SetRowIndexArray (Int_t *)
 
TMatrixTSym< Element > & SetSub (Int_t row_lwb, const TMatrixTBase< Element > &source)
 Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];. More...
 
virtual TMatrixTBase< Element > & SetSub (Int_t row_lwb, Int_t col_lwb, const TMatrixTBase< Element > &source)
 Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];. More...
 
virtual TMatrixTBase< Element > & Shift (Int_t row_shift, Int_t col_shift)
 
TMatrixTSym< Element > & Similarity (const TMatrixT< Element > &n)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal . More...
 
TMatrixTSym< Element > & Similarity (const TMatrixTSym< Element > &n)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal . More...
 
Element Similarity (const TVectorT< Element > &v) const
 Calculate scalar v * (*this) * v^T. More...
 
TMatrixTSym< Element > & SimilarityT (const TMatrixT< Element > &n)
 Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb) It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric . More...
 
TMatrixTSym< Element > & T ()
 
void TMult (const TMatrixT< Element > &a)
 Create a matrix C such that C = A' * A. More...
 
void TMult (const TMatrixTSym< Element > &a)
 Matrix multiplication, with A symmetric Create a matrix C such that C = A' * A = A * A = A * A'. More...
 
TMatrixTSym< Element > & Transpose (const TMatrixTSym< Element > &source)
 Transpose a matrix. More...
 
const TMatrixTSym< Element > & Use (const TMatrixTSym< Element > &a) const
 
const TMatrixTSym< Element > & Use (Int_t nrows, const Element *data) const
 
TMatrixTSym< Element > & Use (Int_t nrows, Element *data)
 
const TMatrixTSym< Element > & Use (Int_t row_lwb, Int_t row_upb, const Element *data) const
 
TMatrixTSym< Element > & Use (Int_t row_lwb, Int_t row_upb, Element *data)
 
TMatrixTSym< Element > & Use (TMatrixTSym< Element > &a)
 

Protected Member Functions

void Allocate (Int_t nrows, Int_t ncols, Int_t row_lwb=0, Int_t col_lwb=0, Int_t init=0, Int_t=-1)
 Allocate new matrix. More...
 
void Delete_m (Int_t size, Element *&)
 delete data pointer m, if it was assigned on the heap More...
 
Int_t Memcpy_m (Element *newp, const Element *oldp, Int_t copySize, Int_t newSize, Int_t oldSize)
 copy copySize doubles from *oldp to *newp . More...
 
Element * New_m (Int_t size)
 return data pointer . More...
 

Protected Attributes

Element fDataStack [TMatrixTBase< Element >::kSizeMax]
 
Element * fElements
 data container More...
 

#include <TMatrixTSym.h>

Member Enumeration Documentation

◆ anonymous enum

template<class Element >
anonymous enum
Enumerator
kWorkMax 

Definition at line 50 of file TMatrixTSym.h.

◆ EMatrixCreatorsOp1

template<class Element >
enum TMatrixTSym::EMatrixCreatorsOp1
Enumerator
kZero 
kUnit 
kTransposed 
kInverted 
kAtA 

Definition at line 51 of file TMatrixTSym.h.

◆ EMatrixCreatorsOp2

template<class Element >
enum TMatrixTSym::EMatrixCreatorsOp2
Enumerator
kPlus 
kMinus 

Definition at line 52 of file TMatrixTSym.h.

Constructor & Destructor Documentation

◆ TMatrixTSym() [1/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( )
inline

Definition at line 54 of file TMatrixTSym.h.

◆ TMatrixTSym() [2/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  nrows)
explicit

Definition at line 41 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [3/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  row_lwb,
Int_t  row_upb 
)

Definition at line 49 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [4/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  no_rows,
const Element *  elements,
Option_t option = "" 
)

option=

  • "F": array elements contains the matrix stored column-wise like in Fortran, so a[i,j] = elements[i+no_rows*j],
  • else it is supposed that array elements are stored row-wise a[i,j] = elements[i*no_cols+j]

array elements are copied

Definition at line 65 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [5/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  row_lwb,
Int_t  row_upb,
const Element *  data,
Option_t option = "" 
)

array elements are copied

Definition at line 78 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [6/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element > &  another)

Definition at line 91 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [7/11]

template<class Element >
template<class Element2 >
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element2 > &  another)
inline

Definition at line 60 of file TMatrixTSym.h.

◆ TMatrixTSym() [8/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( EMatrixCreatorsOp1  op,
const TMatrixTSym< Element > &  prototype 
)

Create a matrix applying a specific operation to the prototype.

Example: TMatrixTSym<Element> a(10,12); ...; TMatrixTSym<Element> b(TMatrixT::kTransposed, a); Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA.

Definition at line 104 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [9/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( EMatrixCreatorsOp1  op,
const TMatrixT< Element > &  prototype 
)

Definition at line 153 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [10/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element > &  a,
EMatrixCreatorsOp2  op,
const TMatrixTSym< Element > &  b 
)

Definition at line 172 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [11/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSymLazy< Element > &  lazy_constructor)

Definition at line 200 of file TMatrixTSym.cxx.

◆ ~TMatrixTSym()

template<class Element >
virtual TMatrixTSym< Element >::~TMatrixTSym ( )
inlinevirtual

Definition at line 72 of file TMatrixTSym.h.

Member Function Documentation

◆ Allocate()

template<class Element >
void TMatrixTSym< Element >::Allocate ( Int_t  no_rows,
Int_t  no_cols,
Int_t  row_lwb = 0,
Int_t  col_lwb = 0,
Int_t  init = 0,
Int_t  = -1 
)
protected

Allocate new matrix.

Arguments are number of rows, columns, row lowerbound (0 default) and column lowerbound (0 default).

Definition at line 274 of file TMatrixTSym.cxx.

◆ Apply() [1/2]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::Apply ( const TElementActionT< Element > &  action)

Definition at line 1553 of file TMatrixTSym.cxx.

◆ Apply() [2/2]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::Apply ( const TElementPosActionT< Element > &  action)

Apply action to each element of the matrix.

To action the location of the current element is passed.

Definition at line 1580 of file TMatrixTSym.cxx.

◆ Class()

TClass * TMatrixTSym< double >::Class ( )

◆ Clear()

template<class Element >
virtual void TMatrixTSym< Element >::Clear ( Option_t = "")
inlinevirtual

Definition at line 92 of file TMatrixTSym.h.

◆ Delete_m()

template<class Element >
void TMatrixTSym< Element >::Delete_m ( Int_t  size,
Element *&  m 
)
protected

delete data pointer m, if it was assigned on the heap

Definition at line 215 of file TMatrixTSym.cxx.

◆ Determinant() [1/2]

template<class Element >
Double_t TMatrixTSym< Element >::Determinant
virtual

Definition at line 935 of file TMatrixTSym.cxx.

◆ Determinant() [2/2]

template<class Element >
void TMatrixTSym< Element >::Determinant ( Double_t d1,
Double_t d2 
) const
virtual

Definition at line 947 of file TMatrixTSym.cxx.

◆ EigenVectors()

template<class Element >
const TMatrixT< Element > TMatrixTSym< Element >::EigenVectors ( TVectorT< Element > &  eigenValues) const

Return a matrix containing the eigen-vectors ordered by descending eigen-values.

For full functionality use TMatrixDSymEigen .

Definition at line 1681 of file TMatrixTSym.cxx.

◆ GetColIndexArray() [1/2]

template<class Element >
virtual Int_t* TMatrixTSym< Element >::GetColIndexArray ( )
inlinevirtual

Definition at line 87 of file TMatrixTSym.h.

◆ GetColIndexArray() [2/2]

template<class Element >
virtual const Int_t* TMatrixTSym< Element >::GetColIndexArray ( ) const
inlinevirtual

Definition at line 86 of file TMatrixTSym.h.

◆ GetMatrixArray() [1/2]

template<class Element >
Element * TMatrixTSym< Element >::GetMatrixArray
inlinevirtual

Definition at line 190 of file TMatrixTSym.h.

◆ GetMatrixArray() [2/2]

template<class Element >
const Element * TMatrixTSym< Element >::GetMatrixArray
inlinevirtual

Definition at line 189 of file TMatrixTSym.h.

◆ GetRowIndexArray() [1/2]

template<class Element >
virtual Int_t* TMatrixTSym< Element >::GetRowIndexArray ( )
inlinevirtual

Definition at line 85 of file TMatrixTSym.h.

◆ GetRowIndexArray() [2/2]

template<class Element >
virtual const Int_t* TMatrixTSym< Element >::GetRowIndexArray ( ) const
inlinevirtual

Definition at line 84 of file TMatrixTSym.h.

◆ GetSub() [1/3]

template<class Element >
TMatrixTSym< Element > TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
Option_t option = "S" 
) const
inline

Definition at line 200 of file TMatrixTSym.h.

◆ GetSub() [2/3]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
TMatrixTBase< Element > &  target,
Option_t option = "S" 
) const
virtual

Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the returned matrix depends on the argument option:

option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default) else : return [row_lwb..row_upb][col_lwb..col_upb]

Definition at line 569 of file TMatrixTSym.cxx.

◆ GetSub() [3/3]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
TMatrixTSym< Element > &  target,
Option_t option = "S" 
) const

Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the returned matrix depends on the argument option:

option == "S" : return [0..row_upb-row_lwb+1][0..row_upb-row_lwb+1] (default) else : return [row_lwb..row_upb][row_lwb..row_upb]

Definition at line 503 of file TMatrixTSym.cxx.

◆ Invert()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Invert ( Double_t det = 0)

Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of Bunch-Kaufman Bunch-Kaufman guarantees a symmetric inverted matrix but is slower than LU .

The user can access Bunch-Kaufman through the TDecompBK class .

Definition at line 961 of file TMatrixTSym.cxx.

◆ InvertFast()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::InvertFast ( Double_t det = 0)

Invert the matrix and calculate its determinant.

Definition at line 979 of file TMatrixTSym.cxx.

◆ IsSymmetric()

template<class Element >
virtual Bool_t TMatrixTSym< Element >::IsSymmetric ( ) const
inlinevirtual

Definition at line 95 of file TMatrixTSym.h.

◆ Memcpy_m()

template<class Element >
Int_t TMatrixTSym< Element >::Memcpy_m ( Element *  newp,
const Element *  oldp,
Int_t  copySize,
Int_t  newSize,
Int_t  oldSize 
)
protected

copy copySize doubles from *oldp to *newp .

However take care of the situation where both pointers are assigned to the same stack space

Definition at line 247 of file TMatrixTSym.cxx.

◆ Minus()

template<class Element >
void TMatrixTSym< Element >::Minus ( const TMatrixTSym< Element > &  a,
const TMatrixTSym< Element > &  b 
)

Symmetric matrix summation. Create a matrix C such that C = A + B.

Definition at line 346 of file TMatrixTSym.cxx.

◆ Mult()

template<class Element >
void TMatrixTSym< Element >::Mult ( const TMatrixTSym< Element > &  a)
inline

Definition at line 77 of file TMatrixTSym.h.

◆ New_m()

template<class Element >
Element * TMatrixTSym< Element >::New_m ( Int_t  size)
protected

return data pointer .

if requested size <= kSizeMax, assign pointer to the stack space

Definition at line 229 of file TMatrixTSym.cxx.

◆ operator()() [1/2]

template<class Element >
Element & TMatrixTSym< Element >::operator() ( Int_t  rown,
Int_t  coln 
)
inline

Definition at line 224 of file TMatrixTSym.h.

◆ operator()() [2/2]

template<class Element >
Element TMatrixTSym< Element >::operator() ( Int_t  rown,
Int_t  coln 
) const
inline

Definition at line 208 of file TMatrixTSym.h.

◆ operator*=()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator*= ( Element  val)

Multiply every element of the matrix with val.

Definition at line 1498 of file TMatrixTSym.cxx.

◆ operator+=() [1/2]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator+= ( const TMatrixTSym< Element > &  source)

Add the source matrix.

Definition at line 1514 of file TMatrixTSym.cxx.

◆ operator+=() [2/2]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator+= ( Element  val)

Add val to every element of the matrix.

Definition at line 1466 of file TMatrixTSym.cxx.

◆ operator-=() [1/2]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator-= ( const TMatrixTSym< Element > &  source)

Subtract the source matrix.

Definition at line 1534 of file TMatrixTSym.cxx.

◆ operator-=() [2/2]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator-= ( Element  val)

Subtract val from every element of the matrix.

Definition at line 1482 of file TMatrixTSym.cxx.

◆ operator=() [1/4]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( const TMatrixTSym< Element > &  source)

Definition at line 1414 of file TMatrixTSym.cxx.

◆ operator=() [2/4]

template<class Element >
template<class Element2 >
TMatrixTSym<Element>& TMatrixTSym< Element >::operator= ( const TMatrixTSym< Element2 > &  source)
inline

Definition at line 144 of file TMatrixTSym.h.

◆ operator=() [3/4]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( const TMatrixTSymLazy< Element > &  source)

Definition at line 1431 of file TMatrixTSym.cxx.

◆ operator=() [4/4]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( Element  val)

Assign val to every element of the matrix.

Definition at line 1450 of file TMatrixTSym.cxx.

◆ operator[]() [1/2]

template<class Element >
TMatrixTRow<Element> TMatrixTSym< Element >::operator[] ( Int_t  rown)
inline

Definition at line 140 of file TMatrixTSym.h.

◆ operator[]() [2/2]

template<class Element >
const TMatrixTRow_const<Element> TMatrixTSym< Element >::operator[] ( Int_t  rown) const
inline

Definition at line 139 of file TMatrixTSym.h.

◆ Plus()

template<class Element >
void TMatrixTSym< Element >::Plus ( const TMatrixTSym< Element > &  a,
const TMatrixTSym< Element > &  b 
)

Symmetric matrix summation. Create a matrix C such that C = A + B.

Definition at line 312 of file TMatrixTSym.cxx.

◆ Randomize()

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::Randomize ( Element  alpha,
Element  beta,
Double_t seed 
)
virtual

randomize matrix element values but keep matrix symmetric

Definition at line 1608 of file TMatrixTSym.cxx.

◆ RandomizePD()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::RandomizePD ( Element  alpha,
Element  beta,
Double_t seed 
)
virtual

randomize matrix element values but keep matrix symmetric positive definite

Definition at line 1639 of file TMatrixTSym.cxx.

◆ Rank1Update()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Rank1Update ( const TVectorT< Element > &  v,
Element  alpha = 1.0 
)

Perform a rank 1 operation on the matrix: A += alpha * v * v^T.

Definition at line 1063 of file TMatrixTSym.cxx.

◆ ResizeTo() [1/3]

template<class Element >
TMatrixTBase<Element>& TMatrixTSym< Element >::ResizeTo ( const TMatrixTSym< Element > &  m)
inline

Definition at line 118 of file TMatrixTSym.h.

◆ ResizeTo() [2/3]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::ResizeTo ( Int_t  nrows,
Int_t  ncols,
Int_t  = -1 
)
virtual

Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted.

Definition at line 771 of file TMatrixTSym.cxx.

◆ ResizeTo() [3/3]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::ResizeTo ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
Int_t  = -1 
)
virtual

Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted.

Definition at line 841 of file TMatrixTSym.cxx.

◆ SetColIndexArray()

template<class Element >
virtual TMatrixTBase<Element>& TMatrixTSym< Element >::SetColIndexArray ( Int_t )
inlinevirtual

Definition at line 90 of file TMatrixTSym.h.

◆ SetMatrixArray()

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::SetMatrixArray ( const Element *  data,
Option_t option = "" 
)
virtual

Definition at line 743 of file TMatrixTSym.cxx.

◆ SetRowIndexArray()

template<class Element >
virtual TMatrixTBase<Element>& TMatrixTSym< Element >::SetRowIndexArray ( Int_t )
inlinevirtual

Definition at line 89 of file TMatrixTSym.h.

◆ SetSub() [1/2]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::SetSub ( Int_t  row_lwb,
const TMatrixTBase< Element > &  source 
)

Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];.

Definition at line 636 of file TMatrixTSym.cxx.

◆ SetSub() [2/2]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::SetSub ( Int_t  row_lwb,
Int_t  col_lwb,
const TMatrixTBase< Element > &  source 
)
virtual

Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];.

Definition at line 686 of file TMatrixTSym.cxx.

◆ Shift()

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::Shift ( Int_t  row_shift,
Int_t  col_shift 
)
virtual

Definition at line 756 of file TMatrixTSym.cxx.

◆ Similarity() [1/3]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Similarity ( const TMatrixT< Element > &  b)

Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal .

It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1099 of file TMatrixTSym.cxx.

◆ Similarity() [2/3]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Similarity ( const TMatrixTSym< Element > &  b)

Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal .

It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1190 of file TMatrixTSym.cxx.

◆ Similarity() [3/3]

template<class Element >
Element TMatrixTSym< Element >::Similarity ( const TVectorT< Element > &  v) const

Calculate scalar v * (*this) * v^T.

Definition at line 1292 of file TMatrixTSym.cxx.

◆ SimilarityT()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::SimilarityT ( const TMatrixT< Element > &  n)

Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb) It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1327 of file TMatrixTSym.cxx.

◆ T()

template<class Element >
TMatrixTSym<Element>& TMatrixTSym< Element >::T ( )
inline

Definition at line 127 of file TMatrixTSym.h.

◆ TMult() [1/2]

template<class Element >
void TMatrixTSym< Element >::TMult ( const TMatrixT< Element > &  a)

Create a matrix C such that C = A' * A.

In other words, c[i,j] = SUM{ a[k,i] * a[k,j] }.

Definition at line 381 of file TMatrixTSym.cxx.

◆ TMult() [2/2]

template<class Element >
void TMatrixTSym< Element >::TMult ( const TMatrixTSym< Element > &  a)

Matrix multiplication, with A symmetric Create a matrix C such that C = A' * A = A * A = A * A'.

Definition at line 429 of file TMatrixTSym.cxx.

◆ Transpose()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Transpose ( const TMatrixTSym< Element > &  source)

Transpose a matrix.

Definition at line 1041 of file TMatrixTSym.cxx.

◆ Use() [1/6]

template<class Element >
const TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( const TMatrixTSym< Element > &  a) const
inline

Definition at line 197 of file TMatrixTSym.h.

◆ Use() [2/6]

template<class Element >
const TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  nrows,
const Element *  data 
) const
inline

Definition at line 193 of file TMatrixTSym.h.

◆ Use() [3/6]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  nrows,
Element *  data 
)
inline

Definition at line 192 of file TMatrixTSym.h.

◆ Use() [4/6]

template<class Element >
const TMatrixTSym<Element>& TMatrixTSym< Element >::Use ( Int_t  row_lwb,
Int_t  row_upb,
const Element *  data 
) const
inline

Definition at line 98 of file TMatrixTSym.h.

◆ Use() [5/6]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  row_lwb,
Int_t  row_upb,
Element *  data 
)

Definition at line 475 of file TMatrixTSym.cxx.

◆ Use() [6/6]

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( TMatrixTSym< Element > &  a)
inline

Definition at line 195 of file TMatrixTSym.h.

Member Data Documentation

◆ fDataStack

template<class Element >
Element TMatrixTSym< Element >::fDataStack[TMatrixTBase< Element >::kSizeMax]
protected

Definition at line 38 of file TMatrixTSym.h.

◆ fElements

template<class Element >
Element* TMatrixTSym< Element >::fElements
protected

data container

Definition at line 39 of file TMatrixTSym.h.


The documentation for this class was generated from the following files: