ROOT
6.07/01
Reference Guide
|
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evaluate the function given a value (simple double) by implementing operator() (const double ).
In addition it defines the interface for copying functions via the pure virtual method Clone(). Derived classes must implement the pure virtual private method DoEval(double ) for the function evaluation in addition to Clone(). An interface for evaluating the function passing a vector (like for multidim functions) is also provided
Definition at line 133 of file IFunction.h.
Public Types | |
typedef IBaseFunctionOneDim | BaseFunc |
Public Member Functions | |
IBaseFunctionOneDim () | |
virtual | ~IBaseFunctionOneDim () |
virtual destructor More... | |
virtual IBaseFunctionOneDim * | Clone () const =0 |
Clone a function. More... | |
double | operator() (double x) const |
Evaluate the function at a point x Use the a pure virtual private method DoEval which must be implemented by sub-classes. More... | |
double | operator() (const double *x) const |
Evaluate the function at a point x[]. More... | |
Private Member Functions | |
virtual double | DoEval (double x) const =0 |
implementation of the evaluation function. Must be implemented by derived classes More... | |
#include <Math/IFunction.h>
Definition at line 137 of file IFunction.h.
|
inline |
Definition at line 139 of file IFunction.h.
|
inlinevirtual |
virtual destructor
Definition at line 144 of file IFunction.h.
|
pure virtual |
Clone a function.
Each derived class will implement their version of the provate DoClone method
Implemented in ROOT::Math::GradFunctor1D, ROOT::Math::Functor1D, ROOT::Math::IntegrandTransform, ROOT::Math::OneDimParamFunctionAdapter< ParamFuncType >, ROOT::Math::Polynomial, ROOT::Math::VavilovAccurateCdf, ROOT::Math::VavilovAccurateQuantile, ROOT::Math::VavilovAccuratePdf, ROOT::Math::WrappedMemFunction< FuncObj, MemFuncPtr >, ROOT::Math::OneDimMultiFunctionAdapter< MultiFuncType >, ROOT::Math::WrappedTF1, ROOT::Math::WrappedFunction< Func >, and RooGenFunction.
Referenced by ROOT::Math::MultiDimParamFunctionAdapter::MultiDimParamFunctionAdapter(), ROOT::Math::MultiDimParamGradFunctionAdapter::MultiDimParamGradFunctionAdapter(), TUnuranContDist::operator=(), TUnuranDiscrDist::operator=(), ROOT::Math::RichardsonDerivator::RichardsonDerivator(), TUnuranContDist::SetCdf(), TUnuranDiscrDist::SetCdf(), ROOT::Math::IntegratorOneDim::SetFunction(), ROOT::Math::RichardsonDerivator::SetFunction(), and TUnuranDiscrDist::TUnuranDiscrDist().
implementation of the evaluation function. Must be implemented by derived classes
Implemented in ROOT::Math::GradFunctor1D, ROOT::Math::Functor1D, ROOT::Math::OneDimParamFunctionAdapter< ParamFuncType >, ROOT::Math::IntegrandTransform, ROOT::Math::IParametricFunctionOneDim, ROOT::Math::OneDimMultiFunctionAdapter< MultiFuncType >, ROOT::Math::WrappedTF1, ROOT::Math::WrappedMemFunction< FuncObj, MemFuncPtr >, ROOT::Math::VavilovAccurateCdf, ROOT::Math::VavilovAccurateQuantile, ROOT::Math::VavilovAccuratePdf, ROOT::Math::WrappedFunction< Func >, and RooGenFunction.
Referenced by operator()().
Evaluate the function at a point x Use the a pure virtual private method DoEval which must be implemented by sub-classes.
Definition at line 156 of file IFunction.h.
Referenced by ROOT::Math::IGradientFunctionOneDim::FdF().
Evaluate the function at a point x[].
Compatible method with multi-dimensional functions
Definition at line 164 of file IFunction.h.