28 #ifndef ROOT_Math_GSLMultiRootSolver 29 #define ROOT_Math_GSLMultiRootSolver 31 #include "gsl/gsl_vector.h" 32 #include "gsl/gsl_matrix.h" 33 #include "gsl/gsl_multiroots.h" 34 #include "gsl/gsl_blas.h" 71 bool InitSolver(
const std::vector<ROOT::Math::IMultiGenFunction*> & funcVec,
const double *
x) {
74 unsigned int n = funcVec.size();
75 if (n == 0)
return false;
77 unsigned int ndim = funcVec[0]->NDim();
80 MATH_ERROR_MSGVAL(
"GSLMultiRootSolver::InitSolver",
"Wrong function dimension",ndim);
92 virtual const std::string &
Name()
const = 0;
98 const double *
X()
const {
105 gsl_vector *
f =
GetF();
110 const double *
Dx()
const {
111 gsl_vector * dx =
GetDx();
119 gsl_vector * dx =
GetDx();
120 if (x == 0 || dx == 0)
return -1;
121 return gsl_multiroot_test_delta(dx, x, absTol, relTol);
127 gsl_vector *
f =
GetF();
128 if (f == 0)
return -1;
129 return gsl_multiroot_test_residual(f, absTol);
137 virtual int SetSolver(
const std::vector<ROOT::Math::IMultiGenFunction*> & funcVec,
const double *
x) = 0;
139 virtual gsl_vector *
GetRoot()
const = 0;
141 virtual gsl_vector *
GetF()
const = 0;
143 virtual gsl_vector *
GetDx()
const = 0;
165 fName(
std::string(
"undefined"))
167 CreateSolver(type, n);
174 if (fSolver) gsl_multiroot_fsolver_free(fSolver);
175 if (fVec != 0) gsl_vector_free(fVec);
190 if (
this == &rhs)
return *
this;
201 if (fSolver) gsl_multiroot_fsolver_free(fSolver);
202 fSolver = gsl_multiroot_fsolver_alloc(type, n);
203 fName = std::string(gsl_multiroot_fsolver_name(fSolver) );
208 virtual int SetSolver(
const std::vector<ROOT::Math::IMultiGenFunction*> & funcVec,
const double *
x) {
212 unsigned int n = funcVec.size();
214 fFunctions.SetFunctions(funcVec, funcVec.size() );
216 if (fVec != 0) gsl_vector_free(fVec);
217 fVec = gsl_vector_alloc( n);
218 std::copy(x,x+n, fVec->data);
220 assert(fSolver != 0);
221 return gsl_multiroot_fsolver_set(fSolver, fFunctions.GetFunctions(), fVec);
224 virtual const std::string &
Name()
const {
229 if (fSolver == 0)
return -1;
230 return gsl_multiroot_fsolver_iterate(fSolver);
235 if (fSolver == 0)
return 0;
236 return gsl_multiroot_fsolver_root(fSolver);
240 virtual gsl_vector *
GetF()
const {
241 if (fSolver == 0)
return 0;
242 return gsl_multiroot_fsolver_f(fSolver);
246 virtual gsl_vector *
GetDx()
const {
247 if (fSolver == 0)
return 0;
248 return gsl_multiroot_fsolver_dx(fSolver);
278 fName(
std::string(
"undefined"))
280 CreateSolver(type, n);
287 if (fDerivSolver) gsl_multiroot_fdfsolver_free(fDerivSolver);
288 if (fVec != 0) gsl_vector_free(fVec);
303 if (
this == &rhs)
return *
this;
315 if (fDerivSolver) gsl_multiroot_fdfsolver_free(fDerivSolver);
316 fDerivSolver = gsl_multiroot_fdfsolver_alloc(type, n);
317 fName = std::string(gsl_multiroot_fdfsolver_name(fDerivSolver) );
323 virtual int SetSolver(
const std::vector<ROOT::Math::IMultiGenFunction*> & funcVec,
const double *
x) {
327 assert(fDerivSolver !=0);
328 unsigned int n = funcVec.size();
329 fGradFuncVec.reserve( n );
330 for (
unsigned int i = 0; i <
n; ++i) {
333 MATH_ERROR_MSG(
"GSLMultiRootSolver::SetSolver",
"Function does not provide gradient interface");
336 fGradFuncVec.push_back( func);
339 fDerivFunctions.SetFunctions(fGradFuncVec, funcVec.size() );
341 if (fVec != 0) gsl_vector_free(fVec);
342 fVec = gsl_vector_alloc( n);
343 std::copy(x,x+n, fVec->data);
345 return gsl_multiroot_fdfsolver_set(fDerivSolver, fDerivFunctions.GetFunctions(), fVec);
348 virtual const std::string &
Name()
const {
353 if (fDerivSolver == 0)
return -1;
354 return gsl_multiroot_fdfsolver_iterate(fDerivSolver);
359 if (fDerivSolver == 0)
return 0;
360 return gsl_multiroot_fdfsolver_root(fDerivSolver);
364 virtual gsl_vector *
GetF()
const {
365 if (fDerivSolver == 0)
return 0;
366 return gsl_multiroot_fdfsolver_f(fDerivSolver);
370 virtual gsl_vector *
GetDx()
const {
371 if (fDerivSolver == 0)
return 0;
372 return gsl_multiroot_fdfsolver_dx(fDerivSolver);
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Namespace for new ROOT classes and functions.
GSLMultiRootBaseSolver, internal class for implementing GSL multi-root finders This is the base class...
virtual gsl_vector * GetRoot() const
solution values at the current iteration
GSLMultiRootSolver(const GSLMultiRootSolver &)
Copy constructor.
virtual gsl_vector * GetRoot() const
solution values at the current iteration
virtual int SetSolver(const std::vector< ROOT::Math::IMultiGenFunction *> &funcVec, const double *x)=0
virtual const std::string & Name() const
return name
GSLMultiRootDerivSolver(const GSLMultiRootDerivSolver &)
Copy constructor.
gsl_multiroot_fsolver * fSolver
GSLMultiRootDerivSolver(const gsl_multiroot_fdfsolver_type *type, int n)
Constructor.
std::vector< ROOT::Math::IMultiGradFunction * > fGradFuncVec
int TestResidual(double absTol) const
test using abs tolerance Sum |f|_i < absTol
#define MATH_ERROR_MSGVAL(loc, str, x)
virtual ~GSLMultiRootSolver()
Destructor (no operations)
virtual gsl_vector * GetDx() const =0
bool InitSolver(const std::vector< ROOT::Math::IMultiGenFunction *> &funcVec, const double *x)
init the solver with function list and initial values
int TestDelta(double absTol, double relTol) const
test using abs and relative tolerance |dx| < absTol + relTol*|x| for every component ...
wrapper to a multi-dim function without derivatives for multi roots algorithm
virtual ~GSLMultiRootBaseSolver()
virtual Destructor
const double * FVal() const
return function values
virtual int Iterate()=0
perform an iteration
virtual gsl_vector * GetRoot() const =0
virtual ~GSLMultiRootDerivSolver()
Destructor (no operations)
#define MATH_ERROR_MSG(loc, str)
virtual gsl_vector * GetF() const
return function values
virtual const std::string & Name() const =0
return name
virtual int Iterate()
perform an iteration
const double * Dx() const
return function steps
virtual gsl_vector * GetF() const
return function values
GSLMultiRootSolver, internal class for implementing GSL multi-root finders not using derivatives...
virtual int SetSolver(const std::vector< ROOT::Math::IMultiGenFunction *> &funcVec, const double *x)
set the solver parameters for the case of derivative
virtual int SetSolver(const std::vector< ROOT::Math::IMultiGenFunction *> &funcVec, const double *x)
set the solver parameters
GSLMultiRootFunctionWrapper fFunctions
void CreateSolver(const gsl_multiroot_fdfsolver_type *type, unsigned int n)
create the solver from the type and size of number of fitting points and number of parameters ...
virtual gsl_vector * GetDx() const
return function steps
GSLMultiRootSolver(const gsl_multiroot_fsolver_type *type, int n)
Constructor from type and simension of system (number of functions)
double func(double *x, double *p)
Namespace for new Math classes and functions.
wrapper to a multi-dim function with derivatives for multi roots algorithm
Binding & operator=(OUT(*fun)(void))
gsl_multiroot_fdfsolver * fDerivSolver
virtual gsl_vector * GetDx() const
return function steps
virtual int Iterate()
perform an iteration
GSLMultiRootDerivFunctionWrapper fDerivFunctions
GSLMultiRootDerivSolver, internal class for implementing GSL multi-root finders using derivatives...
void CreateSolver(const gsl_multiroot_fsolver_type *type, unsigned int n)
const double * X() const
solution values at the current iteration
virtual gsl_vector * GetF() const =0
virtual const std::string & Name() const
return name