56 :
FitterBase( target, name, ranges, theOption )
77 "Saves the best n results from each generation. They are included in the last cycle" );
79 "Saves the best n results from each cycle. They are included in the last cycle. The value should be set to at least 1.0" );
82 "Trim the population to PopSize after assessing the fitness of each individual" );
111 Log() << kHEADER <<
"<GeneticFitter> Optimisation, please be patient " 112 <<
"... (inaccurate progress timing for GA)" <<
Endl;
136 if ( pars.size() ==
fRanges.size() ){
139 if (cycle==fCycles-1) {
const std::vector< TMVA::Interval * > fRanges
MsgLogger & Endl(MsgLogger &ml)
Base class for TMVA fitters.
void GiveHint(std::vector< Double_t > &hint, Double_t fitness=0)
add an individual (a set of variables) to the population if there is a set of variables which is know...
virtual Double_t CalculateFitness()
starts the evaluation of the fitness of all different individuals of the population.
GeneticPopulation & GetGeneticPopulation()
virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps, Double_t factor)
this function provides the ability to change the stepSize of a mutation according to the success of t...
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
void AddPopulation(GeneticPopulation *strangers)
add another population (strangers) to the one of this GeneticPopulation
IFitterTarget & GetFitterTarget() const
Double_t Run()
estimator function interface for fitting
virtual void ProgressNotifier(TString, TString)
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
void TrimPopulation()
trim the population to the predefined size
The TMVA::Interval Class.
Base definition for genetic algorithm.
GeneticGenes * GetGenes(Int_t index)
gives back the "Genes" of the population with the given index.
Double_t GetFitness() const
void Sort()
sort the genepool according to the fitness of the individuals
virtual Bool_t HasConverged(Int_t steps=10, Double_t ratio=0.1)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
std::vector< Double_t > & GetFactors()
void SetParameters(Int_t cycles, Int_t nsteps, Int_t popSize, Int_t SC_steps, Int_t SC_rate, Double_t SC_factor, Double_t convCrit)
set GA configuration parameters
void DeclareOptions()
declare GA options
Abstract ClassifierFactory template that handles arbitrary types.
const char * GetName() const
Returns name of object.
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Interface for a fitter 'target'.
Fitter using a Genetic Algorithm.
void Init()
calls evolution, but if it is not the first time.
Timing information for training and evaluation of MVA methods.
Int_t fSaveBestFromGeneration