ROOT   6.14/05 Reference Guide
TGeoParaboloid.cxx
Go to the documentation of this file.
1 // @(#)root/geom:$Id$
2 // Author: Mihaela Gheata 20/06/04
3
4 /*************************************************************************
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. * 9 * For the list of contributors see$ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11
12 /** \class TGeoParaboloid
13 \ingroup Geometry_classes
14
15 Paraboloid class.
16
17 A paraboloid is the solid bounded by the following surfaces:
18  - 2 planes parallel with XY cutting the Z axis at Z=-dz and Z=+dz
19  - the surface of revolution of a parabola described by:
20  z = a*(x*x + y*y) + b
21
22 The parameters a and b are automatically computed from:
23  - rlo - the radius of the circle of intersection between the
24  parabolic surface and the plane z = -dz
25  - rhi - the radius of the circle of intersection between the
26  parabolic surface and the plane z = +dz
27
28  | -dz = a*rlo*rlo + b
29  | dz = a*rhi*rhi + b where: rlo != rhi, both >= 0
30 */
31
32 #include "Riostream.h"
33 #include "TGeoManager.h"
34 #include "TGeoVolume.h"
35 #include "TVirtualGeoPainter.h"
36 #include "TGeoParaboloid.h"
38 #include "TBuffer3D.h"
39 #include "TBuffer3DTypes.h"
40 #include "TMath.h"
41
43
44 ////////////////////////////////////////////////////////////////////////////////
45 /// Dummy constructor
46
48 {
49  fRlo = 0;
50  fRhi = 0;
51  fDz = 0;
52  fA = 0;
53  fB = 0;
55 }
56
57 ////////////////////////////////////////////////////////////////////////////////
58 /// Default constructor specifying X and Y semiaxis length
59
61  :TGeoBBox(0,0,0)
62 {
63  fRlo = 0;
64  fRhi = 0;
65  fDz = 0;
66  fA = 0;
67  fB = 0;
69  SetParaboloidDimensions(rlo, rhi, dz);
70  ComputeBBox();
71 }
72
73 ////////////////////////////////////////////////////////////////////////////////
74 /// Default constructor specifying X and Y semiaxis length
75
77  :TGeoBBox(name, 0, 0, 0)
78 {
79  fRlo = 0;
80  fRhi = 0;
81  fDz = 0;
82  fA = 0;
83  fB = 0;
85  SetParaboloidDimensions(rlo, rhi, dz);
86  ComputeBBox();
87 }
88
89 ////////////////////////////////////////////////////////////////////////////////
90 /// Default constructor specifying minimum and maximum radius
91 /// - param[0] = rlo
92 /// - param[1] = rhi
93 /// - param[2] = dz
94
96 {
98  SetDimensions(param);
99  ComputeBBox();
100 }
101
102 ////////////////////////////////////////////////////////////////////////////////
103 /// destructor
104
106 {
107 }
108
109 ////////////////////////////////////////////////////////////////////////////////
110 /// Computes capacity of the shape in [length^3]
111
113 {
114  Double_t capacity = TMath::Pi()*fDz*(fRlo*fRlo+fRhi*fRhi);
115  return capacity;
116 }
117
118 ////////////////////////////////////////////////////////////////////////////////
119 /// compute bounding box of the tube
120
122 {
123  fDX = TMath::Max(fRlo, fRhi);
124  fDY = fDX;
125  fDZ = fDz;
126 }
127
128 ////////////////////////////////////////////////////////////////////////////////
129 /// Compute normal to closest surface from POINT.
130
131 void TGeoParaboloid::ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
132 {
133  norm[0] = norm[1] = 0.0;
134  if (TMath::Abs(point[2]) > fDz) {
135  norm[2] = TMath::Sign(1., dir[2]);
136  return;
137  }
138  Double_t safz = fDz-TMath::Abs(point[2]);
139  Double_t r = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
140  Double_t safr = TMath::Abs(r-TMath::Sqrt((point[2]-fB)/fA));
141  if (safz<safr) {
142  norm[2] = TMath::Sign(1., dir[2]);
143  return;
144  }
145  Double_t talf = -2.*fA*r;
146  Double_t calf = 1./TMath::Sqrt(1.+talf*talf);
147  Double_t salf = talf * calf;
148  Double_t phi = TMath::ATan2(point[1], point[0]);
149
150  norm[0] = salf*TMath::Cos(phi);
151  norm[1] = salf*TMath::Sin(phi);
152  norm[2] = calf;
153  Double_t ndotd = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
154  if (ndotd < 0) {
155  norm[0] = -norm[0];
156  norm[1] = -norm[1];
157  norm[2] = -norm[2];
158  }
159 }
160
161 ////////////////////////////////////////////////////////////////////////////////
162 /// test if point is inside the elliptical tube
163
165 {
166  if (TMath::Abs(point[2])>fDz) return kFALSE;
167  Double_t aa = fA*(point[2]-fB);
168  if (aa < 0) return kFALSE;
169  Double_t rsq = point[0]*point[0]+point[1]*point[1];
170  if (aa < fA*fA*rsq) return kFALSE;
171  return kTRUE;
172 }
173
174 ////////////////////////////////////////////////////////////////////////////////
175 /// compute closest distance from point px,py to each vertex
176
178 {
180  const Int_t numPoints=n*(n+1)+2;
181  return ShapeDistancetoPrimitive(numPoints, px, py);
182 }
183
184 ////////////////////////////////////////////////////////////////////////////////
185 /// Compute distance from a point to the parabola given by:
186 /// z = a*rsq + b; rsq = x*x+y*y
187
189 {
190  Double_t rsq = point[0]*point[0]+point[1]*point[1];
191  Double_t a = fA * (dir[0]*dir[0] + dir[1]*dir[1]);
192  Double_t b = 2.*fA*(point[0]*dir[0]+point[1]*dir[1])-dir[2];
193  Double_t c = fA*rsq + fB - point[2];
195  if (TMath::Abs(a)<TGeoShape::Tolerance()) {
196  if (TMath::Abs(b)<TGeoShape::Tolerance()) return dist; // big
197  dist = -c/b;
198  if (dist < 0) return TGeoShape::Big();
199  return dist; // OK
200  }
201  Double_t ainv = 1./a;
202  Double_t sum = - b*ainv;
203  Double_t prod = c*ainv;
204  Double_t delta = sum*sum - 4.*prod;
205  if (delta<0) return dist; // big
206  delta = TMath::Sqrt(delta);
207  Double_t sone = TMath::Sign(1.,ainv);
208  Int_t i = -1;
209  while (i<2) {
210  dist = 0.5*(sum+i*sone*delta);
211  i += 2;
212  if (dist<0) continue;
213  if (dist<1.E-8) {
214  Double_t talf = -2.*fA*TMath::Sqrt(rsq);
215  Double_t phi = TMath::ATan2(point[1], point[0]);
216  Double_t ndotd = talf*(TMath::Cos(phi)*dir[0]+TMath::Sin(phi)*dir[1])+dir[2];
217  if (!in) ndotd *= -1;
218  if (ndotd<0) return dist;
219  } else return dist;
220  }
221  return TGeoShape::Big();
222 }
223
224 ////////////////////////////////////////////////////////////////////////////////
225 /// compute distance from inside point to surface of the paraboloid
226
227 Double_t TGeoParaboloid::DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
228 {
229  if (iact<3 && safe) {
230  // compute safe distance
231  *safe = Safety(point, kTRUE);
232  if (iact==0) return TGeoShape::Big();
233  if (iact==1 && step<*safe) return TGeoShape::Big();
234  }
235
236  Double_t dz = TGeoShape::Big();
237  if (dir[2]<0) {
238  dz = -(point[2]+fDz)/dir[2];
239  } else if (dir[2]>0) {
240  dz = (fDz-point[2])/dir[2];
241  }
242  Double_t dpara = DistToParaboloid(point, dir, kTRUE);
243  return TMath::Min(dz, dpara);
244 }
245
246 ////////////////////////////////////////////////////////////////////////////////
247 /// compute distance from outside point to surface of the paraboloid and safe distance
248
249 Double_t TGeoParaboloid::DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
250 {
251  Double_t snxt = TGeoShape::Big();
252  if (iact<3 && safe) {
253  // compute safe distance
254  *safe = Safety(point, kFALSE);
255  if (iact==0) return TGeoShape::Big();
256  if (iact==1 && step<*safe) return TGeoShape::Big();
257  }
258  Double_t xnew, ynew, znew;
259  if (point[2]<=-fDz) {
260  if (dir[2]<=0) return TGeoShape::Big();
261  snxt = -(fDz+point[2])/dir[2];
262  // find extrapolated X and Y
263  xnew = point[0]+snxt*dir[0];
264  ynew = point[1]+snxt*dir[1];
265  if ((xnew*xnew+ynew*ynew) <= fRlo*fRlo) return snxt;
266  } else if (point[2]>=fDz) {
267  if (dir[2]>=0) return TGeoShape::Big();
268  snxt = (fDz-point[2])/dir[2];
269  // find extrapolated X and Y
270  xnew = point[0]+snxt*dir[0];
271  ynew = point[1]+snxt*dir[1];
272  if ((xnew*xnew+ynew*ynew) <= fRhi*fRhi) return snxt;
273  }
274  snxt = DistToParaboloid(point, dir, kFALSE);
275  if (snxt > 1E20) return snxt;
276  znew = point[2]+snxt*dir[2];
277  if (TMath::Abs(znew) <= fDz) return snxt;
278  return TGeoShape::Big();
279 }
280
281 ////////////////////////////////////////////////////////////////////////////////
282 /// Divide the paraboloid along one axis.
283
284 TGeoVolume *TGeoParaboloid::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/,
285  Double_t /*start*/, Double_t /*step*/)
286 {
287  Error("Divide", "Paraboloid divisions not implemented");
288  return 0;
289 }
290
291 ////////////////////////////////////////////////////////////////////////////////
292 /// Fill vector param[4] with the bounding cylinder parameters. The order
293 /// is the following : Rmin, Rmax, Phi1, Phi2
294
296 {
297  param[0] = 0.; // Rmin
298  param[1] = fDX; // Rmax
299  param[1] *= param[1];
300  param[2] = 0.; // Phi1
301  param[3] = 360.; // Phi2
302 }
303
304 ////////////////////////////////////////////////////////////////////////////////
305 /// in case shape has some negative parameters, these has to be computed
306 /// in order to fit the mother
307
309 {
310  return 0;
311 }
312
313 ////////////////////////////////////////////////////////////////////////////////
314 /// print shape parameters
315
317 {
318  printf("*** Shape %s: TGeoParaboloid ***\n", GetName());
319  printf(" rlo = %11.5f\n", fRlo);
320  printf(" rhi = %11.5f\n", fRhi);
321  printf(" dz = %11.5f\n", fDz);
322  printf(" Bounding box:\n");
324 }
325
326 ////////////////////////////////////////////////////////////////////////////////
327 /// Creates a TBuffer3D describing *this* shape.
328 /// Coordinates are in local reference frame.
329
331 {
333  Int_t nbPnts = n*(n+1)+2;
334  Int_t nbSegs = n*(2*n+3);
335  Int_t nbPols = n*(n+2);
336
338  nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 2*n*5 + n*n*6);
339
340  if (buff)
341  {
342  SetPoints(buff->fPnts);
343  SetSegsAndPols(*buff);
344  }
345
346  return buff;
347 }
348
349 ////////////////////////////////////////////////////////////////////////////////
350 /// Fill TBuffer3D structure for segments and polygons.
351
353 {
354  Int_t indx, i, j;
356
357  Int_t c = GetBasicColor();
358
359  Int_t nn1 = (n+1)*n+1;
360  indx = 0;
361  // Lower end-cap (n radial segments)
362  for (j=0; j<n; j++) {
363  buff.fSegs[indx++] = c+2;
364  buff.fSegs[indx++] = 0;
365  buff.fSegs[indx++] = j+1;
366  }
367  // Sectors (n)
368  for (i=0; i<n+1; i++) {
369  // lateral (circles) segments (n)
370  for (j=0; j<n; j++) {
371  buff.fSegs[indx++] = c;
372  buff.fSegs[indx++] = n*i+1+j;
373  buff.fSegs[indx++] = n*i+1+((j+1)%n);
374  }
375  if (i==n) break; // skip i=n for generators
376  // generator segments (n)
377  for (j=0; j<n; j++) {
378  buff.fSegs[indx++] = c;
379  buff.fSegs[indx++] = n*i+1+j;
380  buff.fSegs[indx++] = n*(i+1)+1+j;
381  }
382  }
383  // Upper end-cap
384  for (j=0; j<n; j++) {
385  buff.fSegs[indx++] = c+1;
386  buff.fSegs[indx++] = n*n+1+j;
387  buff.fSegs[indx++] = nn1;
388  }
389
390  indx = 0;
391
392  // lower end-cap (n polygons)
393  for (j=0; j<n; j++) {
394  buff.fPols[indx++] = c+2;
395  buff.fPols[indx++] = 3;
396  buff.fPols[indx++] = n+j;
397  buff.fPols[indx++] = (j+1)%n;
398  buff.fPols[indx++] = j;
399  }
400  // Sectors (n)
401  for (i=0; i<n; i++) {
402  // lateral faces (n)
403  for (j=0; j<n; j++) {
404  buff.fPols[indx++] = c;
405  buff.fPols[indx++] = 4;
406  buff.fPols[indx++] = (2*i+1)*n+j;
407  buff.fPols[indx++] = 2*(i+1)*n+j;
408  buff.fPols[indx++] = (2*i+3)*n+j;
409  buff.fPols[indx++] = 2*(i+1)*n+((j+1)%n);
410  }
411  }
412  // upper end-cap (n polygons)
413  for (j=0; j<n; j++) {
414  buff.fPols[indx++] = c+1;
415  buff.fPols[indx++] = 3;
416  buff.fPols[indx++] = 2*n*(n+1)+j;
417  buff.fPols[indx++] = 2*n*(n+1)+((j+1)%n);
418  buff.fPols[indx++] = (2*n+1)*n+j;
419  }
420 }
421
422 ////////////////////////////////////////////////////////////////////////////////
423 /// Computes the closest distance from given point to this shape.
424
426 {
427  Double_t safz = fDz-TMath::Abs(point[2]);
428  if (!in) safz = -safz;
429  Double_t safr = TGeoShape::Big();
430  Double_t rsq = point[0]*point[0]+point[1]*point[1];
431  Double_t z0 = fA*rsq+fB;
432  Double_t r0sq = (point[2]-fB)/fA;
433  if (r0sq<0) {
434  if (in) return 0.;
435  return safz;
436  }
437  Double_t dr = TMath::Sqrt(rsq)-TMath::Sqrt(r0sq);
438  if (in) {
439  if (dr>-1.E-8) return 0.;
440  Double_t dz = TMath::Abs(point[2]-z0);
441  safr = -dr*dz/TMath::Sqrt(dr*dr+dz*dz);
442  } else {
443  if (dr<1.E-8) return safz;
444  Double_t talf = -2.*fA*TMath::Sqrt(r0sq);
445  Double_t salf = talf/TMath::Sqrt(1.+talf*talf);
446  safr = TMath::Abs(dr*salf);
447  }
448  if (in) return TMath::Min(safr,safz);
449  return TMath::Max(safr,safz);
450 }
451
452 ////////////////////////////////////////////////////////////////////////////////
453 /// Set paraboloid dimensions.
454
456 {
457  if ((rlo<0) || (rhi<0) || (dz<=0) || TMath::Abs(rlo-rhi)<TGeoShape::Tolerance()) {
459  Error("SetParaboloidDimensions", "Dimensions of %s invalid: check (rlo>=0) (rhi>=0) (rlo!=rhi) dz>0",GetName());
460  return;
461  }
462  fRlo = rlo;
463  fRhi = rhi;
464  fDz = dz;
465  Double_t dd = 1./(fRhi*fRhi - fRlo*fRlo);
466  fA = 2.*fDz*dd;
467  fB = - fDz * (fRlo*fRlo + fRhi*fRhi)*dd;
468 }
469
470 ////////////////////////////////////////////////////////////////////////////////
471 /// Set paraboloid dimensions starting from an array.
472
474 {
475  Double_t rlo = param[0];
476  Double_t rhi = param[1];
477  Double_t dz = param[2];
478  SetParaboloidDimensions(rlo, rhi, dz);
479 }
480
481 ////////////////////////////////////////////////////////////////////////////////
482 /// Create paraboloid mesh points.
483 /// ~~~ {.cpp}
484 /// Npoints = n*(n+1) + 2
485 /// ifirst = 0
486 /// ipoint(i,j) = 1+i*n+j; i=[0,n] j=[0,n-1]
487 /// ilast = 1+n*(n+1)
488 /// Nsegments = n*(2*n+3)
489 /// lower: (0, j+1); j=[0,n-1]
490 /// circle(i): (n*i+1+j, n*i+1+(j+1)%n); i=[0,n] j=[0,n-1]
491 /// generator(i): (n*i+1+j, n*(i+1)+1+j); i,j=[0,n-1]
492 /// upper: (n*n+1+j, (n+1)*n+1) j=[0,n-1]
493 /// Npolygons = n*(n+2)
494 /// lower: (n+j, (j+1)%n, j) j=[0,n-1]
495 /// lateral(i): ((2*i+1)*n+j, 2*(i+1)*n+j, (2*i+3)*n+j, 2*(i+1)*n+(j+1)%n)
496 /// i,j = [0,n-1]
497 /// upper: ((2n+1)*n+j, 2*n*(n+1)+(j+1)%n, 2*n*(n+1)+j) j=[0,n-1]
498 /// ~~~
499
501 {
502  if (!points) return;
503  Double_t ttmin, ttmax;
504  ttmin = TMath::ATan2(-fDz, fRlo);
505  ttmax = TMath::ATan2(fDz, fRhi);
507  Double_t dtt = (ttmax-ttmin)/n;
508  Double_t dphi = 360./n;
509  Double_t tt;
510  Double_t r, z, delta;
511  Double_t phi, sph, cph;
512  Int_t indx = 0;
513  // center of the lower endcap:
514  points[indx++] = 0; // x
515  points[indx++] = 0; // y
516  points[indx++] = -fDz;
517  for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
518  if (i==0) {
519  r = fRlo;
520  z = -fDz;
521  } else if (i==n) {
522  r = fRhi;
523  z = fDz;
524  } else {
525  tt = TMath::Tan(ttmin + i*dtt);
526  delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
527  r = 0.5*(tt+TMath::Sqrt(delta))/fA;
528  z = r*tt;
529  }
530  for (Int_t j=0; j<n; j++) {
532  sph=TMath::Sin(phi);
533  cph=TMath::Cos(phi);
534  points[indx++] = r*cph;
535  points[indx++] = r*sph;
536  points[indx++] = z;
537  }
538  }
539  // center of the upper endcap
540  points[indx++] = 0; // x
541  points[indx++] = 0; // y
542  points[indx++] = fDz;
543 }
544
545 ////////////////////////////////////////////////////////////////////////////////
546 /// Returns numbers of vertices, segments and polygons composing the shape mesh.
547
548 void TGeoParaboloid::GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
549 {
551  nvert = n*(n+1)+2;
552  nsegs = n*(2*n+3);
553  npols = n*(n+2);
554 }
555
556 ////////////////////////////////////////////////////////////////////////////////
557 /// Returns number of vertices on the paraboloid mesh.
558
560 {
562  return (n*(n+1)+2);
563 }
564
565 ////////////////////////////////////////////////////////////////////////////////
566 /// Save a primitive as a C++ statement(s) on output stream "out".
567
568 void TGeoParaboloid::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
569 {
570  if (TObject::TestBit(kGeoSavePrimitive)) return;
571  out << " // Shape: " << GetName() << " type: " << ClassName() << std::endl;
572  out << " rlo = " << fRlo << ";" << std::endl;
573  out << " rhi = " << fRhi << ";" << std::endl;
574  out << " dz = " << fDZ << ";" << std::endl;
575  out << " TGeoShape *" << GetPointerName() << " = new TGeoParaboloid(\"" << GetName() << "\", rlo,rhi,dz);" << std::endl;
577 }
578
579 ////////////////////////////////////////////////////////////////////////////////
580 /// Create paraboloid mesh points.
581
583 {
584  if (!points) return;
585  Double_t ttmin, ttmax;
586  ttmin = TMath::ATan2(-fDz, fRlo);
587  ttmax = TMath::ATan2(fDz, fRhi);
589  Double_t dtt = (ttmax-ttmin)/n;
590  Double_t dphi = 360./n;
591  Double_t tt;
592  Double_t r, z, delta;
593  Double_t phi, sph, cph;
594  Int_t indx = 0;
595  // center of the lower endcap:
596  points[indx++] = 0; // x
597  points[indx++] = 0; // y
598  points[indx++] = -fDz;
599  for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
600  if (i==0) {
601  r = fRlo;
602  z = -fDz;
603  } else if (i==n) {
604  r = fRhi;
605  z = fDz;
606  } else {
607  tt = TMath::Tan(ttmin + i*dtt);
608  delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
609  r = 0.5*(tt+TMath::Sqrt(delta))/fA;
610  z = r*tt;
611  }
612  for (Int_t j=0; j<n; j++) {
614  sph=TMath::Sin(phi);
615  cph=TMath::Cos(phi);
616  points[indx++] = r*cph;
617  points[indx++] = r*sph;
618  points[indx++] = z;
619  }
620  }
621  // center of the upper endcap
622  points[indx++] = 0; // x
623  points[indx++] = 0; // y
624  points[indx++] = fDz;
625 }
626
627 ////////////////////////////////////////////////////////////////////////////////
629 {
630 }
631
632 ////////////////////////////////////////////////////////////////////////////////
633 /// Fills a static 3D buffer and returns a reference.
634
635 const TBuffer3D & TGeoParaboloid::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
636 {
637  static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
638  TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
639
640  if (reqSections & TBuffer3D::kRawSizes) {
642  Int_t nbPnts = n*(n+1)+2;
643  Int_t nbSegs = n*(2*n+3);
644  Int_t nbPols = n*(n+2);
645  if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 2*n*5 + n*n*6)) {
646  buffer.SetSectionsValid(TBuffer3D::kRawSizes);
647  }
648  }
649  if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
650  SetPoints(buffer.fPnts);
651  if (!buffer.fLocalFrame) {
652  TransformPoints(buffer.fPnts, buffer.NbPnts());
653  }
654  SetSegsAndPols(buffer);
655  buffer.SetSectionsValid(TBuffer3D::kRaw);
656  }
657
658  return buffer;
659 }
660
661 ////////////////////////////////////////////////////////////////////////////////
662 /// Check the inside status for each of the points in the array.
663 /// Input: Array of point coordinates + vector size
664 /// Output: Array of Booleans for the inside of each point
665
666 void TGeoParaboloid::Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
667 {
668  for (Int_t i=0; i<vecsize; i++) inside[i] = Contains(&points[3*i]);
669 }
670
671 ////////////////////////////////////////////////////////////////////////////////
672 /// Compute the normal for an array o points so that norm.dot.dir is positive
673 /// Input: Arrays of point coordinates and directions + vector size
674 /// Output: Array of normal directions
675
676 void TGeoParaboloid::ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
677 {
678  for (Int_t i=0; i<vecsize; i++) ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
679 }
680
681 ////////////////////////////////////////////////////////////////////////////////
682 /// Compute distance from array of input points having directions specified by dirs. Store output in dists
683
684 void TGeoParaboloid::DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
685 {
686  for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
687 }
688
689 ////////////////////////////////////////////////////////////////////////////////
690 /// Compute distance from array of input points having directions specified by dirs. Store output in dists
691
692 void TGeoParaboloid::DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
693 {
694  for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
695 }
696
697 ////////////////////////////////////////////////////////////////////////////////
698 /// Compute safe distance from each of the points in the input array.
699 /// Input: Array of point coordinates, array of statuses for these points, size of the arrays
700 /// Output: Safety values
701
702 void TGeoParaboloid::Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
703 {
704  for (Int_t i=0; i<vecsize; i++) safe[i] = Safety(&points[3*i], inside[i]);
705 }
TGeoParaboloid()
Dummy constructor.
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
static long int sum(long int i)
Definition: Factory.cxx:2258
auto * tt
Definition: textangle.C:16
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Box class.
Definition: TGeoBBox.h:17
T1 Sign(T1 a, T2 b)
Definition: TMathBase.h:153
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
virtual void SetPoints(Double_t *points) const
Create paraboloid mesh points.
float Float_t
Definition: RtypesCore.h:53
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
const char Option_t
Definition: RtypesCore.h:62
Geometrical transformation package.
Definition: TGeoMatrix.h:40
virtual void Sizeof3D() const
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
Definition: TGeoVolume.h:48
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
UInt_t NbPnts() const
Definition: TBuffer3D.h:80
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:168
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
virtual void InspectShape() const
Prints shape parameters.
Definition: TGeoBBox.cxx:793
Short_t Abs(Short_t d)
Definition: TMathBase.h:108
Paraboloid class.
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
static Double_t Tolerance()
Definition: TGeoShape.h:91
virtual void InspectShape() const
print shape parameters
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
Computes the closest distance from given point to this shape.
virtual ~TGeoParaboloid()
destructor
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide the paraboloid along one axis.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void ComputeBBox()
compute bounding box of the tube
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from outside point to surface of the paraboloid and safe distance ...
Double_t fDZ
Definition: TGeoBBox.h:23
Double_t * fPnts
Definition: TBuffer3D.h:112
Conversion from degree to radian: .
Definition: TMath.h:82
Double_t DistToParaboloid(const Double_t *point, const Double_t *dir, Bool_t in) const
Compute distance from a point to the parabola given by: z = a*rsq + b; rsq = x*x+y*y ...
Double_t ATan2(Double_t, Double_t)
Definition: TMath.h:678
constexpr Double_t Pi()
Definition: TMath.h:38
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
Definition: TBuffer3D.h:65
virtual void SetDimensions(Double_t *param)
Set paraboloid dimensions starting from an array.
const char * GetPointerName() const
Provide a pointer name containing uid.
Definition: TGeoShape.cxx:699
Int_t * fPols
Definition: TBuffer3D.h:114
Bool_t fLocalFrame
Definition: TBuffer3D.h:90
point * points
Definition: X3DBuffer.c:20
virtual const char * GetName() const
Get the shape name.
Definition: TGeoShape.cxx:248
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
Int_t GetNsegments() const
Get number of segments approximating circles.
Int_t ShapeDistancetoPrimitive(Int_t numpoints, Int_t px, Int_t py) const
Returns distance to shape primitive mesh.
Definition: TGeoShape.cxx:259
Definition: TBuffer3D.h:67
Base abstract class for all shapes.
Definition: TGeoShape.h:25
ROOT::R::TRInterface & r
Definition: Object.C:4
virtual Bool_t Contains(const Double_t *point) const
test if point is inside the elliptical tube
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
auto * a
Definition: textangle.C:12
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
void TransformPoints(Double_t *points, UInt_t NbPoints) const
Tranform a set of points (LocalToMaster)
Definition: TGeoShape.cxx:552
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Definition: TBuffer3D.cxx:359
Generic 3D primitive description class.
Definition: TBuffer3D.h:17
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
void SetParaboloidDimensions(Double_t rlo, Double_t rhi, Double_t dz)
Set paraboloid dimensions.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
constexpr Double_t E()
Base of natural log: .
Definition: TMath.h:97
Double_t Cos(Double_t)
Definition: TMath.h:640
const Bool_t kFALSE
Definition: RtypesCore.h:88
#define ClassImp(name)
Definition: Rtypes.h:359
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:562
double Double_t
Definition: RtypesCore.h:55
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother ...
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
static Double_t Big()
Definition: TGeoShape.h:88
Double_t fDY
Definition: TGeoBBox.h:22
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
Definition: TGeoShape.cxx:524
you should not use this method at all Int_t Int_t z
Definition: TRolke.cxx:630
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from inside point to surface of the paraboloid
virtual void FillBuffer3D(TBuffer3D &buffer, Int_t reqSections, Bool_t localFrame) const
Fills the supplied buffer, with sections in desired frame See TBuffer3D.h for explanation of sections...
Definition: TGeoBBox.cxx:1033
virtual Int_t GetNmeshVertices() const
Returns number of vertices on the paraboloid mesh.
Int_t * fSegs
Definition: TBuffer3D.h:113
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:200
Double_t Sin(Double_t)
Definition: TMath.h:636
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Definition: TRolke.cxx:630
Double_t fDX
Definition: TGeoBBox.h:21
#define c(i)
Definition: RSha256.hxx:101
Double_t Sqrt(Double_t x)
Definition: TMath.h:690
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
compute closest distance from point px,py to each vertex
const Bool_t kTRUE
Definition: RtypesCore.h:87
Int_t GetBasicColor() const
Get the basic color (0-7).
Definition: TGeoShape.cxx:673
const Int_t n
Definition: legend1.C:16
Double_t Tan(Double_t)
Definition: TMath.h:644
char name[80]
Definition: TGX11.cxx:109
virtual void SetSegsAndPols(TBuffer3D &buff) const
Fill TBuffer3D structure for segments and polygons.