Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
BinData.cxx
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Author: M. Borinsky
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Implementation file for class BinData
12
13#include "Fit/BinData.h"
14#include "Math/Error.h"
15
16#include <cassert>
17#include <cmath>
18
19using namespace std;
20
21namespace ROOT {
22
23 namespace Fit
24 {
25
26 BinData::BinData(unsigned int maxpoints, unsigned int dim,
27 ErrorType err ) :
28 FitData( maxpoints, dim ),
29 fErrorType( err ),
30 fDataPtr( nullptr ),
31 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
32 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
33 {
36 }
37
38
39 /**
40 constructor from option and default range
41 */
42 BinData::BinData (const DataOptions & opt, unsigned int maxpoints,
43 unsigned int dim, ErrorType err ) :
44 FitData( opt, maxpoints, dim ),
45 fErrorType( err ),
46 fDataPtr( nullptr ),
47 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
48 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
49 {
52 }
53
54 /**
55 constructor from options and range
56 efault is 1D and value errors
57 */
58 BinData::BinData (const DataOptions & opt, const DataRange & range,
59 unsigned int maxpoints, unsigned int dim, ErrorType err ) :
60 FitData( opt, range, maxpoints, dim ),
61 fErrorType( err ),
62 fDataPtr( nullptr ),
63 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
64 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
65 {
68 }
69
70 /** constructurs using external data */
71
72 /**
73 constructor from external data for 1D with errors on coordinate and value
74 */
75 BinData::BinData (unsigned int n, const double * dataX, const double * val,
76 const double * ex , const double * eval ) :
77 FitData( n, dataX ),
78 fDataPtr( nullptr ),
79 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
80 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
81 {
82 assert( val );
83 fDataPtr = val;
84
85 if ( nullptr != eval )
86 {
87 fDataErrorPtr = eval;
88
90
91 if ( nullptr != ex )
92 {
93 fCoordErrorsPtr.resize( 1 );
94
96
98 }
99 }
100 else
101 {
103 }
104
105 fpTmpCoordErrorVector = new double [ fDim ];
106
107 ComputeSums();
108 }
109
110 /**
111 constructor from external data for 2D with errors on coordinate and value
112 */
113 BinData::BinData(unsigned int n, const double * dataX, const double * dataY,
114 const double * val, const double * ex , const double * ey,
115 const double * eval ) :
116 FitData( n, dataX, dataY ),
117 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
118 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
119 {
120 assert( val );
121 fDataPtr = val;
122
123 if ( nullptr != eval )
124 {
125 fDataErrorPtr = eval;
126
128
129 if ( nullptr != ex || nullptr != ey )
130 {
131 fCoordErrorsPtr.resize( 2 );
132
133 fCoordErrorsPtr[0] = ex;
134 fCoordErrorsPtr[1] = ey;
135
137 }
138 }
139 else
140 {
142 }
143
144 fpTmpCoordErrorVector = new double [ fDim ];
145 ComputeSums();
146 }
147
148 /**
149 constructor from external data for 3D with errors on coordinate and value
150 */
151 BinData::BinData(unsigned int n, const double * dataX, const double * dataY,
152 const double * dataZ, const double * val, const double * ex ,
153 const double * ey , const double * ez , const double * eval ) :
154 FitData( n, dataX, dataY, dataZ ),
155 fDataErrorPtr( nullptr ), fDataErrorHighPtr( nullptr ), fDataErrorLowPtr( nullptr ),
156 fpTmpCoordErrorVector( nullptr ), fpTmpBinEdgeVector( nullptr )
157 {
158 assert( val );
159 fDataPtr = val;
160
161 if ( nullptr != eval )
162 {
163 fDataErrorPtr = eval;
164
166
167 if ( nullptr != ex || nullptr != ey || nullptr != ez )
168 {
169 fCoordErrorsPtr.resize( 3 );
170
171 fCoordErrorsPtr[0] = ex;
172 fCoordErrorsPtr[1] = ey;
173 fCoordErrorsPtr[2] = ez;
174
176 }
177 }
178 else
179 {
181 }
182
183 fpTmpCoordErrorVector = new double [ fDim ];
184 ComputeSums();
185 }
186
187 /**
188 destructor
189 */
191 {
192 assert( fMaxPoints == 0 || fWrapped == fData.empty() );
193
194 assert( kValueError == fErrorType || kCoordError == fErrorType ||
196 assert( fMaxPoints == 0 || fDataError.empty() || &fDataError.front() == fDataErrorPtr );
197 assert( fMaxPoints == 0 || fDataErrorHigh.empty() || &fDataErrorHigh.front() == fDataErrorHighPtr );
198 assert( fMaxPoints == 0 || fDataErrorLow.empty() || &fDataErrorLow.front() == fDataErrorLowPtr );
199 assert( fMaxPoints == 0 || fDataErrorLow.empty() == fDataErrorHigh.empty() );
200 assert( fMaxPoints == 0 || fData.empty() || &fData.front() == fDataPtr );
201
202 for ( unsigned int i=0; i < fDim; i++ )
203 {
204 assert( fCoordErrors.empty() || &fCoordErrors[i].front() == fCoordErrorsPtr[i] );
205 }
206
207 if ( fpTmpBinEdgeVector )
208 {
209 delete[] fpTmpBinEdgeVector;
210 fpTmpBinEdgeVector= nullptr;
211 }
212
214 {
215 delete[] fpTmpCoordErrorVector;
216 fpTmpCoordErrorVector = nullptr;
217 }
218 }
219
220 /**
221 copy constructors
222 */
223 BinData::BinData (const BinData & rhs) :
224 FitData()
225 {
226 *this = rhs;
227 }
228
230 {
231 FitData::operator=( rhs );
232
233 if ( fpTmpBinEdgeVector )
234 {
235 assert( Opt().fIntegral );
236
237 delete[] fpTmpBinEdgeVector;
238 fpTmpBinEdgeVector= nullptr;
239 }
240
242 {
243 delete[] fpTmpCoordErrorVector;
244 fpTmpCoordErrorVector = nullptr;
245 }
246
247 fDataPtr = nullptr;
249
252 fBinEdge = rhs.fBinEdge;
253
254 if ( fWrapped )
255 {
256 fData.clear();
257 fCoordErrors.clear();
258 fDataError.clear();
259 fDataErrorHigh.clear();
260 fDataErrorLow.clear();
261
262 fDataPtr = rhs.fDataPtr;
267 }
268 else
269 {
270 fData = rhs.fData;
271
272 if ( !fData.empty() )
273 fDataPtr = &fData.front();
274
279
280 if( ! fCoordErrors.empty() )
281 {
282 assert( kCoordError == fErrorType || kAsymError == fErrorType );
283 fCoordErrorsPtr.resize( fDim );
284
285 for ( unsigned int i=0; i<fDim; i++ )
286 {
287 fCoordErrorsPtr[i] = fCoordErrors[i].empty() ? nullptr : &fCoordErrors[i].front();
288 }
289 }
290
294
295 assert( fDataErrorLow.empty() == fDataErrorHigh.empty() );
296 assert( fDataErrorLow.empty() != fDataError.empty() || kNoError == fErrorType );
297
298 if ( !fDataError.empty() )
299 {
300 assert( kValueError == fErrorType || kCoordError == fErrorType );
301 fDataErrorPtr = &fDataError.front();
302 }
303 else if ( !fDataErrorHigh.empty() && !fDataErrorLow.empty() )
304 {
305 assert( kAsymError == fErrorType );
308 }
309 }
310
311 fpTmpCoordErrorVector= new double[ fDim ];
312
313 if ( Opt().fIntegral )
314 fpTmpBinEdgeVector = new double[ fDim ];
315
316 return *this;
317 }
318
319
320 /**
321 preallocate a data set with given size , dimension and error type (to get the full point size)
322 If the data set already exists and it is having the compatible point size space for the new points
323 is created in the data sets, while if not compatible the old data are erased and new space of
324 new size is allocated.
325 (i.e if exists initialize is equivalent to a resize( NPoints() + maxpoints)
326 */
327
328 void BinData::Append( unsigned int newPoints, unsigned int dim , ErrorType err )
329 {
330 assert( !fWrapped );
331 assert( fMaxPoints == 0 || fWrapped == fData.empty() );
332
333 assert( kValueError == fErrorType || kCoordError == fErrorType ||
335 assert( fMaxPoints == 0 || fDataError.empty() || &fDataError.front() == fDataErrorPtr );
336 assert( fMaxPoints == 0 || fDataErrorHigh.empty() || &fDataErrorHigh.front() == fDataErrorHighPtr );
337 assert( fMaxPoints == 0 || fDataErrorLow.empty() || &fDataErrorLow.front() == fDataErrorLowPtr );
338 assert( fMaxPoints == 0 || fDataErrorLow.empty() == fDataErrorHigh.empty() );
339 assert( fMaxPoints == 0 || fData.empty() || &fData.front() == fDataPtr );
340
341 FitData::Append( newPoints, dim );
342
343 fErrorType = err;
344
347 }
348
349 void BinData::Initialize( unsigned int newPoints, unsigned int dim, ErrorType err )
350 {
351 Append( newPoints, dim, err );
352 }
353
354
355
356 /**
357 apply a Log transformation of the data values
358 can be used for example when fitting an exponential or gaussian
359 Transform the data in place need to copy if want to preserve original data
360 The data sets must not contain negative values. IN case it does,
361 an empty data set is returned
362 */
364 { // apply log transform on the bin data values
365
366 if ( fWrapped )
367 {
368 UnWrap();
369 }
370
371 if ( kNoError == fErrorType )
372 {
374 fDataErrorPtr = fDataError.empty() ? nullptr : &fDataError.front();
375 }
376
377 for ( unsigned int i=0; i < fNPoints; i++ )
378 {
379 double val = fData[i];
380
381 if ( val <= 0 )
382 {
383 MATH_ERROR_MSG("BinData::TransformLog","Some points have negative values - cannot apply a log transformation");
384 return *this;
385 }
386
387 fData[i] = std::log( val );
388
389 if( kNoError == fErrorType )
390 {
391 fDataError[i] = val;
392 }
393 else if ( kValueError == fErrorType )
394 {
395 fDataError[i]*= val;
396 }
397 else if ( kCoordError == fErrorType )
398 {
399 fDataError[i]/= val;
400 }
401 else if ( kAsymError == fErrorType )
402 {
403 fDataErrorHigh[i]/= val;
404 fDataErrorLow[i]/= val;
405 }
406 else
407 assert(false);
408 }
409
410 if ( kNoError == fErrorType )
411 {
413 }
414
415 return *this;
416 }
417
418
419 /**
420 add one dim data with only coordinate and values
421 */
422 void BinData::Add( double x, double y )
423 {
424 assert( kNoError == fErrorType );
425
426 assert( !fData.empty() && fDataPtr );
427 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
428 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
429 assert( fDataError.empty() && !fDataErrorPtr );
430 assert( fCoordErrors.empty() && fCoordErrorsPtr.empty() );
431
432 fData[ fNPoints ] = y;
433
434 FitData::Add( x );
435 fSumContent += y;
436 }
437
438 /**
439 add one dim data with no error in the coordinate (x)
440 in this case store the inverse of the error in the value (y)
441 */
442 void BinData::Add( double x, double y, double ey )
443 {
444 assert( kValueError == fErrorType );
445 assert( !fData.empty() && fDataPtr );
446 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
447 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
448 assert( !fDataError.empty() && fDataErrorPtr );
449 assert( fCoordErrors.empty() && fCoordErrorsPtr.empty() );
450
451 fData[ fNPoints ] = y;
452 fDataError[ fNPoints ] = (ey != 0.0) ? 1.0/ey : 0.0;
453
454 FitData::Add( x );
455 fSumContent += y;
456 if (y != 0 || ey != 1.0) fSumError2 += ey*ey;
457 // set the weight flag checking if error^2 != y
458 if (!fIsWeighted)
459 if (y != 0 && std::abs( ey*ey/y - 1.0) > 1.E-12) fIsWeighted = true;
460 }
461
462 /**
463 add one dim data with error in the coordinate (x)
464 in this case store the value (y) error and not the inverse
465 */
466 void BinData::Add( double x, double y, double ex, double ey )
467 {
468 assert( kCoordError == fErrorType );
469 assert( !fData.empty() && fDataPtr );
470 assert( !fDataError.empty() && fDataErrorPtr );
471 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
472 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
473 assert( !fCoordErrors.empty() && fCoordErrors.size() == 1 );
474 assert( !fCoordErrorsPtr.empty() && fCoordErrorsPtr.size() == 1 && fCoordErrorsPtr[0] );
475 assert( &fCoordErrors[0].front() == fCoordErrorsPtr[0] );
476
477 fData[ fNPoints ] = y;
478 fCoordErrors[0][ fNPoints ] = ex;
480
481 FitData::Add( x );
482 fSumContent += y;
483 if (y != 0 || ey != 1.0) fSumError2 += ey*ey;
484 // set the weight flag checking if error^2 != y
485 if (!fIsWeighted)
486 if (y != 0 && std::abs( ey*ey/y - 1.0) > 1.E-12) fIsWeighted = true;
487 }
488
489 /**
490 add one dim data with error in the coordinate (x) and asymmetric errors in the value (y)
491 in this case store the y errors and not the inverse
492 */
493 void BinData::Add( double x, double y, double ex, double eyl, double eyh )
494 {
495 assert( kAsymError == fErrorType );
496 assert( !fData.empty() && fDataPtr );
497 assert( !fDataErrorHigh.empty() && fDataErrorHighPtr );
498 assert( !fDataErrorLow.empty() && fDataErrorLowPtr );
499 assert( fDataError.empty() && !fDataErrorPtr );
500 assert( !fCoordErrors.empty() && fCoordErrors.size() == 1 );
501 assert( !fCoordErrorsPtr.empty() && fCoordErrorsPtr.size() == 1 && fCoordErrorsPtr[0] );
502 assert( &fCoordErrors[0].front() == fCoordErrorsPtr[0] );
503
504 fData[ fNPoints ] = y;
505 fCoordErrors[0][ fNPoints ] = ex;
506 fDataErrorHigh[ fNPoints ] = eyh;
507 fDataErrorLow[ fNPoints ] = eyl;
508
509 FitData::Add( x );
510 fSumContent += y;
511 if (y != 0 || eyl != 1.0 || eyh != 1.0) fSumError2 += (eyl+eyh)*(eyl+eyh)/4;
512
513 }
514
515 /**
516 add multi-dim coordinate data with only value
517 */
518 void BinData::Add( const double* x, double val )
519 {
520 assert( kNoError == fErrorType );
521
522 assert( !fData.empty() && fDataPtr );
523 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
524 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
525 assert( fDataError.empty() && !fDataErrorPtr );
526 assert( fCoordErrors.empty() && fCoordErrorsPtr.empty() );
527
528 fData[ fNPoints ] = val;
529
530 FitData::Add( x );
531 fSumContent += val;
532 }
533
534 /**
535 add multi-dim coordinate data with only error in value
536 The class stores internally the inverse of the error in this case
537 */
538 void BinData::Add( const double* x, double val, double eval )
539 {
540 assert( kValueError == fErrorType );
541 assert( !fData.empty() && fDataPtr );
542 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
543 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
544 assert( !fDataError.empty() && fDataErrorPtr );
545 assert( fCoordErrors.empty() && fCoordErrorsPtr.empty() );
546
547 fData[ fNPoints ] = val;
548 fDataError[ fNPoints ] = (eval != 0.0) ? 1.0/eval : 0.0;
549
550 FitData::Add( x );
551 fSumContent += val;
552 if (val != 0 || eval != 1.0) fSumError2 += eval*eval;
553 if (!fIsWeighted)
554 if (val != 0 && std::abs( eval*eval/val - 1.0) > 1.E-12) fIsWeighted = true;
555 }
556
557 /**
558 add multi-dim coordinate data with both error in coordinates and value
559 */
560 void BinData::Add( const double* x, double val, const double* ex, double eval )
561 {
562 assert( kCoordError == fErrorType );
563 assert( !fData.empty() && fDataPtr );
564 assert( !fDataError.empty() && fDataErrorPtr );
565 assert( fDataErrorHigh.empty() && !fDataErrorHighPtr );
566 assert( fDataErrorLow.empty() && !fDataErrorLowPtr );
567 assert( fCoordErrors.size() == fDim );
568 assert( fCoordErrorsPtr.size() == fDim );
569
570 fData[ fNPoints ] = val;
571
572 for( unsigned int i=0; i<fDim; i++ )
573 {
574 assert( &fCoordErrors[i].front() == fCoordErrorsPtr[i] );
575
576 fCoordErrors[i][ fNPoints ] = ex[i];
577 }
578 // in this case we store the y error and not the inverse
579 fDataError[ fNPoints ] = eval;
580
581 FitData::Add( x );
582 fSumContent += val;
583 if (val != 0 || eval != 1.0) fSumError2 += eval*eval;
584 if (!fIsWeighted)
585 if (val != 0 && std::abs( eval*eval/val - 1.0) > 1.E-12) fIsWeighted = true;
586 }
587
588 /**
589 add multi-dim coordinate data with both error in coordinates and value
590 */
591 void BinData::Add( const double* x, double val, const double* ex, double elval, double ehval )
592 {
593 assert( kAsymError == fErrorType );
594
595 assert( !fData.empty() && fDataPtr );
596 assert( !fDataErrorHigh.empty() && fDataErrorHighPtr );
597 assert( !fDataErrorLow.empty() && fDataErrorLowPtr );
598 assert( fDataError.empty() && !fDataErrorPtr );
599 assert( fCoordErrors.size() == fDim );
600 assert( fCoordErrorsPtr.size() == fDim );
601
602 fData[ fNPoints ] = val;
603
604 for( unsigned int i=0; i<fDim; i++ )
605 {
606 assert( &fCoordErrors[i].front() == fCoordErrorsPtr[i] );
607
608 fCoordErrors[i][ fNPoints ] = ex[i];
609 }
610
611 fDataErrorLow[ fNPoints ] = elval;
612 fDataErrorHigh[ fNPoints ] = ehval;
613
614 FitData::Add( x );
615 fSumContent += val;
616 if (val != 0 || elval != 1.0 || ehval != 1.0 )
617 fSumError2 += (elval+ehval)*(elval+ehval)/4;
618 }
619
620
621 /**
622 add the bin width data, a pointer to an array with the bin upper edge information.
623 This is needed when fitting with integral options
624 The information is added for the previously inserted point.
625 BinData::Add must be called before
626 */
627 void BinData::AddBinUpEdge( const double* xup )
628 {
629 if ( fBinEdge.empty() )
630 InitBinEdge();
631
632 assert( fBinEdge.size() == fDim );
633
634 for ( unsigned int i=0; i<fDim; i++ )
635 {
636 fBinEdge[i].push_back( xup[i] );
637
638 // check that is consistent with number of points added in the data
639 assert( fNPoints == fBinEdge[i].size() );
640 }
641
642 // compute the bin volume
643 const double* xlow = Coords( fNPoints-1 );
644
645 double binVolume = 1.0;
646 for ( unsigned int j = 0; j < fDim; j++ )
647 {
648 binVolume *= ( xup[j] - xlow[j] );
649 }
650
651 // store the minimum bin volume found as reference for future normalizations
652 if ( fNPoints == 1 )
653 fRefVolume = binVolume;
654 else if ( binVolume < fRefVolume )
655 fRefVolume = binVolume;
656 }
657
658
660 {
662 fDataPtr = fData.empty() ? nullptr : &fData.front();
663 }
664
666 {
667 assert( kValueError == fErrorType || kCoordError == fErrorType ||
669
671 {
672 delete[] fpTmpCoordErrorVector;
673 fpTmpCoordErrorVector = nullptr;
674 }
675
676 if ( kNoError == fErrorType )
677 {
678 fCoordErrors.clear();
679 fCoordErrorsPtr.clear();
680
681 fDataErrorHigh.clear();
682 fDataErrorHighPtr = nullptr;
683
684 fDataErrorLow.clear();
685 fDataErrorLowPtr = nullptr;
686
687 fDataError.clear();
688 fDataErrorPtr = nullptr;
689
690 return;
691 }
692
694 {
695 fCoordErrorsPtr.resize( fDim );
696 fCoordErrors.resize( fDim );
697 for( unsigned int i=0; i < fDim; i++ )
698 {
700
701 fCoordErrorsPtr[i] = fCoordErrors[i].empty() ? nullptr : &fCoordErrors[i].front();
702 }
703
704 fpTmpCoordErrorVector = new double[fDim];
705 }
706 else
707 {
708 fCoordErrors.clear();
709 fCoordErrorsPtr.clear();
710 }
711
713 {
715 fDataErrorPtr = fDataError.empty() ? nullptr : &fDataError.front();
716
717 fDataErrorHigh.clear();
718 fDataErrorHighPtr = nullptr;
719 fDataErrorLow.clear();
720 fDataErrorLowPtr = nullptr;
721 }
722 else if ( fErrorType == kAsymError )
723 {
725 fDataErrorHighPtr = fDataErrorHigh.empty() ? nullptr : &fDataErrorHigh.front();
726
728 fDataErrorLowPtr = fDataErrorLow.empty() ? nullptr : &fDataErrorLow.front();
729
730 fDataError.clear();
731 fDataErrorPtr = nullptr;
732 }
733 else
734 {
735 assert(false);
736 }
737 }
738
740 {
741 fBinEdge.resize( fDim );
742
743 for( unsigned int i=0; i<fDim; i++ )
744 {
746 }
747
748 if ( fpTmpBinEdgeVector )
749 {
750 delete[] fpTmpBinEdgeVector;
751 fpTmpBinEdgeVector = nullptr;
752 }
753
754 fpTmpBinEdgeVector = new double[ fDim ];
755 }
756
758 {
759 assert( fWrapped );
760 assert( kValueError == fErrorType || kCoordError == fErrorType ||
762 assert( fDataError.empty() || &fDataError.front() == fDataErrorPtr );
763 assert( fDataErrorHigh.empty() || &fDataErrorHigh.front() == fDataErrorHighPtr );
764 assert( fDataErrorLow.empty() || &fDataErrorLow.front() == fDataErrorLowPtr );
765 assert( fDataErrorLow.empty() == fDataErrorHigh.empty() );
766
767 assert( fData.empty() );
768 assert( fDataPtr );
769
770 unsigned vectorPadding = FitData::VectorPadding(fNPoints);
771 fData.resize(fNPoints + vectorPadding);
772 std::copy( fDataPtr, fDataPtr + fNPoints, fData.begin() );
773 fDataPtr = fData.empty() ? nullptr : &fData.front();
774
775 for ( unsigned int i=0; i < fDim; i++ )
776 {
777 assert( fCoordErrorsPtr[i] );
778 assert( fCoordErrors.empty() || &fCoordErrors[i].front() == fCoordErrorsPtr[i] );
779 }
780
782 {
783 assert( fDataError.empty() );
784 assert( fDataErrorPtr );
785
786 fDataError.resize(fNPoints + vectorPadding);
787 std::copy(fDataErrorPtr, fDataErrorPtr + fNPoints + vectorPadding, fDataError.begin());
788 fDataErrorPtr = fDataError.empty() ? nullptr : &fDataError.front();
789 }
790
791 if ( kValueError == fErrorType )
792 {
793 for ( unsigned int i=0; i < fNPoints; i++ )
794 {
795 fDataError[i] = 1.0 / fDataError[i];
796 }
797 }
798
800 {
801 fCoordErrors.resize( fDim );
802 for( unsigned int i=0; i < fDim; i++ )
803 {
804 assert( fCoordErrorsPtr[i] );
805 fCoordErrors[i].resize(fNPoints + vectorPadding);
806 std::copy(fCoordErrorsPtr[i], fCoordErrorsPtr[i] + fNPoints + vectorPadding, fCoordErrors[i].begin());
807 fCoordErrorsPtr[i] = fCoordErrors[i].empty() ? nullptr : &fCoordErrors[i].front();
808 }
809
810 if( kAsymError == fErrorType )
811 {
812 assert( fDataErrorHigh.empty() );
813 assert( fDataErrorLow.empty() );
815
816 fDataErrorHigh.resize(fNPoints + vectorPadding);
817 fDataErrorLow.resize(fNPoints + vectorPadding);
818 std::copy(fDataErrorHighPtr, fDataErrorHighPtr + fNPoints + vectorPadding, fDataErrorHigh.begin());
819 std::copy(fDataErrorLowPtr, fDataErrorLowPtr + fNPoints + vectorPadding, fDataErrorLow.begin());
820 fDataErrorHighPtr = fDataErrorHigh.empty() ? nullptr : &fDataErrorHigh.front();
821 fDataErrorLowPtr = fDataErrorLow.empty() ? nullptr : &fDataErrorLow.front();
822 }
823 }
824
826 }
827
829 unsigned int n = Size();
830 fSumContent = 0;
831 fSumError2 = 0;
832 if (fErrorType != kAsymError) {
833 for (unsigned int i = 0; i < n; ++i) {
834 double y = Value(i);
835 double err = Error(i);
836 fSumContent += y;
837 if (y != 0 || err != 1.0) fSumError2 += err*err;
838 }
839 }
840 else {
841 for (unsigned int i = 0; i < n; ++i) {
842 double y = Value(i);
843 fSumContent += y;
844 double elval,ehval = 0;
845 GetAsymError(i,elval,ehval);
846 if (y != 0 || elval != 1.0 || ehval != 1.0)
847 fSumError2 += (elval+ehval)*(elval+ehval)/4;
848 }
849 }
850 // set the weight flag
852 }
853
854 } // end namespace Fit
855
856} // end namespace ROOT
#define MATH_ERROR_MSG(loc, str)
Definition: Error.h:82
double log(double)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:53
const double * fDataErrorHighPtr
Definition: BinData.h:613
const double * fDataPtr
Definition: BinData.h:602
std::vector< double > fData
Stores the data values the same way as the coordinates.
Definition: BinData.h:601
void InitializeErrors()
Definition: BinData.cxx:665
std::vector< const double * > fCoordErrorsPtr
Definition: BinData.h:605
void Append(unsigned int newPoints, unsigned int dim=1, ErrorType err=kValueError)
preallocate a data set with given size , dimension and error type (to get the full point size) If the...
Definition: BinData.cxx:328
std::vector< double > fDataErrorLow
Definition: BinData.h:611
void AddBinUpEdge(const double *xup)
add the bin width data, a pointer to an array with the bin upper edge information.
Definition: BinData.cxx:627
const double * fDataErrorLowPtr
Definition: BinData.h:614
std::vector< double > fDataErrorHigh
Definition: BinData.h:610
BinData & LogTransform()
apply a Log transformation of the data values can be used for example when fitting an exponential or ...
Definition: BinData.cxx:363
BinData(unsigned int maxpoints=0, unsigned int dim=1, ErrorType err=kValueError)
constructor from dimension of point and max number of points (to pre-allocate vector) Give a zero val...
Definition: BinData.cxx:26
virtual ~BinData()
destructor
Definition: BinData.cxx:190
ErrorType fErrorType
Definition: BinData.h:591
double * fpTmpCoordErrorVector
Definition: BinData.h:618
double Value(unsigned int ipoint) const
return the value for the given fit point
Definition: BinData.h:217
void InitDataVector()
Definition: BinData.cxx:659
std::vector< std::vector< double > > fCoordErrors
Definition: BinData.h:604
void Add(double x, double y)
add one dim data with only coordinate and values
Definition: BinData.cxx:422
double fSumContent
Definition: BinData.h:594
void Initialize(unsigned int newPoints, unsigned int dim=1, ErrorType err=kValueError)
Definition: BinData.cxx:349
BinData & operator=(const BinData &rhs)
Definition: BinData.cxx:229
std::vector< std::vector< double > > fBinEdge
Definition: BinData.h:620
void GetAsymError(unsigned int ipoint, double &lowError, double &highError) const
Definition: BinData.h:296
double fRefVolume
Definition: BinData.h:593
const double * fDataErrorPtr
Definition: BinData.h:612
double fSumError2
Definition: BinData.h:595
double * fpTmpBinEdgeVector
Definition: BinData.h:623
std::vector< double > fDataError
Definition: BinData.h:609
double Error(unsigned int ipoint) const
Definition: BinData.h:251
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition: DataRange.h:34
Base class for all the fit data types: Stores the coordinates and the DataOptions.
Definition: FitData.h:66
unsigned int Size() const
return number of fit points
Definition: FitData.h:303
void Add(double x)
add one dim data with only coordinate and values
Definition: FitData.h:264
void Append(unsigned int newPoints, unsigned int dim=1)
Definition: FitData.cxx:248
unsigned int fMaxPoints
Definition: FitData.h:394
static constexpr unsigned VectorPadding(const unsigned)
If VecCore is not defined, there is no vectorization available and the SIMD vector size will always b...
Definition: FitData.h:382
unsigned int fDim
Definition: FitData.h:396
FitData & operator=(const FitData &rhs)
Definition: FitData.cxx:216
unsigned int fNPoints
Definition: FitData.h:395
const DataOptions & Opt() const
access to options
Definition: FitData.h:319
const double * Coords(unsigned int ipoint) const
return a pointer to the coordinates data for the given fit point
Definition: FitData.h:246
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
Double_t ey[n]
Definition: legend1.C:17
Double_t ex[n]
Definition: legend1.C:17
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Definition: StringConv.hxx:21
DataOptions : simple structure holding the options on how the data are filled.
Definition: DataOptions.h:28